MonoGS项目中的高斯点云修剪机制解析
背景介绍
MonoGS是一个基于单目相机的3D场景重建系统,它采用了创新的高斯点云表示方法来构建场景模型。在该系统中,高斯点云的动态管理是保证重建质量的关键环节之一,其中修剪(pruning)机制尤为重要。本文将深入分析MonoGS中针对单目情况设计的高斯点云修剪策略。
高斯点云修剪的核心思想
在MonoGS系统中,高斯点云的修剪主要基于几何稳定性原则。系统会定期检查场景中的高斯点,并移除那些被认为几何上不稳定的点。这种修剪策略特别针对单目视觉系统设计,因为单目系统缺乏直接的深度信息,更容易产生不稳定的几何估计。
修剪条件的具体实现
系统通过两个关键条件来判断是否修剪某个高斯点:
-
时间窗口条件:只考虑最近3个关键帧中新增的高斯点。这是通过比较高斯点的创建ID(
unique_kfIDs)与当前窗口中的关键帧ID来实现的。具体来说,系统会保留当前窗口中所有关键帧的ID,排序后取第三个ID作为阈值,只处理创建ID大于等于该阈值的高斯点。 -
观测次数条件:要求高斯点必须被至少3个其他关键帧观测到。这里的"其他"指的是除了创建该高斯点的关键帧之外的关键帧。系统会为每个高斯点维护一个观测计数器(
n_obs),记录它被多少个不同的关键帧观测到。
修剪策略的技术细节
在实际实现中,修剪过程分为以下几个步骤:
-
观测统计:系统会遍历当前窗口中所有关键帧的可见性信息(
occ_aware_visibility),统计每个高斯点被观测到的次数。 -
条件判断:结合上述两个条件(时间窗口和观测次数),生成一个布尔掩码(
to_prune)来标记需要修剪的高斯点。 -
执行修剪:根据掩码移除对应的高斯点,并同步更新各关键帧的可见性信息。
设计考量与优化
这种修剪策略的设计考虑了以下几个重要因素:
-
新点保护:给予新创建的高斯点一定的"适应期",避免过早修剪可能有效的点。
-
几何验证:通过多视角观测的要求,确保保留的高斯点具有可靠的几何基础。
-
计算效率:限制修剪范围到最近的关键帧,保持计算量可控。
-
单目特殊性:特别针对单目系统缺乏深度信息的弱点,采用更严格的观测验证标准。
实际应用效果
在实际应用中,这种修剪策略能够有效:
- 移除由于单目深度估计不准确产生的虚假几何
- 保持场景表示的紧凑性
- 提高后续跟踪和建图的稳定性
- 减少不必要的计算资源消耗
通过这种精心设计的修剪机制,MonoGS能够在单目条件下实现高质量的场景重建,展现了高斯点云表示方法在SLAM系统中的强大潜力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00