MonoGS项目中的点云生成与SLAM架构解析
点云生成机制
在MonoGS项目中,点云的生成采用了与传统高斯溅射(Gaussian Splatting)不同的方法。传统方法通常依赖于SfM(Structure from Motion)技术从图像序列中重建点云,并将结果存储为COLMAP格式。而MonoGS则创新性地采用了联合估计方法,直接从随机初始化的点云开始,同时优化相机位姿和3D高斯分布。
这种方法的优势在于不需要预先进行SfM重建,而是通过端到端的方式同时完成场景重建和相机定位。系统初始化时会随机生成一组3D点作为初始点云,随后通过可微分渲染和反向传播不断优化这些点的位置、尺度和透明度等属性,最终形成高质量的三维高斯表示。
SLAM系统架构设计
MonoGS采用了标准的跟踪/建图SLAM架构,但针对高斯溅射特性进行了专门优化:
-
前端跟踪系统:负责实时性要求高的相机位姿估计。这部分采用轻量级设计,确保系统能够实时运行。前端主要处理帧间跟踪和初步的场景理解。
-
后端建图系统:专注于密集的3D高斯建图。这部分可以容忍较高的计算开销,进行更精细的场景重建和优化。后端会综合多帧信息,优化高斯参数以获得更精确的场景表示。
这种前后端分离的设计既保证了系统的实时性,又确保了重建质量。前端快速提供相机位姿估计,后端则利用这些位姿信息进行更精确的场景建模,二者协同工作实现完整的SLAM功能。
技术实现特点
MonoGS的点云生成和优化过程完全可微分,这使得系统能够通过标准的反向传播算法进行端到端训练。系统会不断调整高斯参数,包括位置、协方差、不透明度和球谐系数等,以最小化渲染图像与真实观测之间的差异。
在SLAM流程中,系统会维护一个全局的高斯地图,并随着相机运动不断扩展和优化这个地图。新观测到的区域会被添加到地图中,而已有区域则会根据新的观测进行精修。这种增量式建图方式使得MonoGS能够处理大规模场景的实时重建任务。
通过这种创新的点云生成方法和精心设计的SLAM架构,MonoGS实现了在单目设置下的高质量实时三维重建,为基于高斯溅射的SLAM系统提供了新的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00