首页
/ MonoGS项目中的点云生成与SLAM架构解析

MonoGS项目中的点云生成与SLAM架构解析

2025-07-10 02:38:25作者:裘旻烁

点云生成机制

在MonoGS项目中,点云的生成采用了与传统高斯溅射(Gaussian Splatting)不同的方法。传统方法通常依赖于SfM(Structure from Motion)技术从图像序列中重建点云,并将结果存储为COLMAP格式。而MonoGS则创新性地采用了联合估计方法,直接从随机初始化的点云开始,同时优化相机位姿和3D高斯分布。

这种方法的优势在于不需要预先进行SfM重建,而是通过端到端的方式同时完成场景重建和相机定位。系统初始化时会随机生成一组3D点作为初始点云,随后通过可微分渲染和反向传播不断优化这些点的位置、尺度和透明度等属性,最终形成高质量的三维高斯表示。

SLAM系统架构设计

MonoGS采用了标准的跟踪/建图SLAM架构,但针对高斯溅射特性进行了专门优化:

  1. 前端跟踪系统:负责实时性要求高的相机位姿估计。这部分采用轻量级设计,确保系统能够实时运行。前端主要处理帧间跟踪和初步的场景理解。

  2. 后端建图系统:专注于密集的3D高斯建图。这部分可以容忍较高的计算开销,进行更精细的场景重建和优化。后端会综合多帧信息,优化高斯参数以获得更精确的场景表示。

这种前后端分离的设计既保证了系统的实时性,又确保了重建质量。前端快速提供相机位姿估计,后端则利用这些位姿信息进行更精确的场景建模,二者协同工作实现完整的SLAM功能。

技术实现特点

MonoGS的点云生成和优化过程完全可微分,这使得系统能够通过标准的反向传播算法进行端到端训练。系统会不断调整高斯参数,包括位置、协方差、不透明度和球谐系数等,以最小化渲染图像与真实观测之间的差异。

在SLAM流程中,系统会维护一个全局的高斯地图,并随着相机运动不断扩展和优化这个地图。新观测到的区域会被添加到地图中,而已有区域则会根据新的观测进行精修。这种增量式建图方式使得MonoGS能够处理大规模场景的实时重建任务。

通过这种创新的点云生成方法和精心设计的SLAM架构,MonoGS实现了在单目设置下的高质量实时三维重建,为基于高斯溅射的SLAM系统提供了新的解决方案。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
178
262
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
513
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
268
308
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58
GitNextGitNext
基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3