GLM库中矩阵与向量乘法实现解析
2025-05-24 02:18:31作者:傅爽业Veleda
在计算机图形学和3D数学计算中,矩阵与向量的乘法是最基础也是最重要的运算之一。GLM作为OpenGL数学库的C++实现,提供了高效的矩阵向量乘法运算。本文将深入分析GLM库中glm::mat4 * glm::vec4这一关键运算的实现细节。
矩阵向量乘法原理
在数学上,4x4矩阵与4维向量的乘法定义如下:
给定矩阵M和向量V:
M = | m00 m01 m02 m03 |
| m10 m11 m12 m13 |
| m20 m21 m22 m23 |
| m30 m31 m32 m33 |
V = | v0 |
| v1 |
| v2 |
| v3 |
乘法结果是一个新的向量R,其每个分量为矩阵行与向量的点积:
R = | m00*v0 + m01*v1 + m02*v2 + m03*v3 |
| m10*v0 + m11*v1 + m12*v2 + m13*v3 |
| m20*v0 + m21*v1 + m22*v2 + m23*v3 |
| m30*v0 + m31*v1 + m32*v2 + m33*v3 |
GLM实现分析
GLM在detail/type_mat4x4.inl文件中实现了这一运算。核心代码采用模板化设计,支持不同精度的矩阵和向量类型(如float、double等)。
实现的关键部分展开来看是这样的:
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER typename mat<4, 4, T, Q>::col_type operator*
(
mat<4, 4, T, Q> const& m,
typename mat<4, 4, T, Q>::row_type const& v
)
{
return typename mat<4, 4, T, Q>::col_type(
m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z + m[3][0] * v.w,
m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z + m[3][1] * v.w,
m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z + m[3][2] * v.w,
m[0][3] * v.x + m[1][3] * v.y + m[2][3] * v.z + m[3][3] * v.w);
}
实现特点
-
内存布局优化:GLM默认使用列主序(column-major)存储,这与OpenGL的约定一致。这种布局在现代GPU架构上通常有更好的性能表现。
-
表达式模板技术:虽然在这个基础运算中没有直接使用,但GLM的高阶运算中会使用表达式模板来优化复杂表达式的计算过程,避免中间变量的产生。
-
SIMD优化可能性:现代编译器可能会自动将这种密集计算向量化为SIMD指令(如SSE、AVX等),进一步提升性能。
-
类型安全:通过模板参数确保矩阵和向量维度的匹配,避免运行时错误。
实际应用场景
这种矩阵向量乘法在图形学中有广泛应用:
- 顶点变换:将模型空间顶点通过模型视图投影矩阵变换到裁剪空间
- 法向量变换:使用逆转置矩阵变换法向量
- 光照计算:将光源位置转换到视图空间
理解这一基础运算的实现,有助于开发者:
- 在性能敏感场景下做出合理的设计选择
- 调试图形渲染中的矩阵相关问题
- 根据需求扩展或定制数学库功能
GLM的这种实现既保持了数学上的直观性,又为编译器优化留下了充足空间,体现了高质量数学库的设计平衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136