Tablib 技术文档
2024-12-25 19:08:05作者:滕妙奇
1. 安装指南
Tablib 是一个格式无关的表格数据集库,支持多种输出格式。要安装 Tablib,请按照以下步骤操作:
1.1 使用 pip 安装
pip install tablib
1.2 从源码安装
如果你希望从源码安装 Tablib,可以按照以下步骤操作:
-
克隆 Tablib 的 GitHub 仓库:
git clone https://github.com/jazzband/tablib.git -
进入项目目录:
cd tablib -
安装依赖并安装 Tablib:
pip install -r requirements.txt python setup.py install
2. 项目的使用说明
Tablib 提供了多种数据格式的支持,包括 Excel、JSON、YAML、Pandas DataFrames、HTML、Jira、LaTeX、TSV、ODS、CSV 和 DBF 等。以下是 Tablib 的基本使用示例:
2.1 创建数据集
import tablib
# 创建一个空的数据集
data = tablib.Dataset()
# 添加数据
data.append(['Alice', 23, 'alice@example.com'])
data.append(['Bob', 31, 'bob@example.com'])
2.2 导出数据
# 导出为 JSON
json_data = data.export('json')
# 导出为 Excel
with open('output.xlsx', 'wb') as f:
f.write(data.export('xlsx'))
2.3 导入数据
# 从 CSV 文件导入数据
with open('input.csv', 'r') as f:
data.csv = f.read()
3. 项目 API 使用文档
Tablib 提供了丰富的 API 来处理表格数据。以下是一些常用的 API 示例:
3.1 Dataset 类
Dataset 是 Tablib 的核心类,用于表示表格数据。
import tablib
# 创建一个 Dataset 对象
data = tablib.Dataset()
# 添加行数据
data.append(['Alice', 23, 'alice@example.com'])
data.append(['Bob', 31, 'bob@example.com'])
# 添加列数据
data.append_col([90, 85], header='Score')
# 获取数据
print(data.dict) # 以字典形式返回数据
print(data.headers) # 获取表头
3.2 导出与导入
Tablib 支持多种格式的导出与导入。
# 导出为 JSON
json_data = data.export('json')
# 从 JSON 导入
new_data = tablib.Dataset().load(json_data, format='json')
4. 项目安装方式
Tablib 可以通过 pip 或从源码安装。以下是两种安装方式的详细说明:
4.1 使用 pip 安装
pip install tablib
4.2 从源码安装
-
克隆 Tablib 的 GitHub 仓库:
git clone https://github.com/jazzband/tablib.git -
进入项目目录:
cd tablib -
安装依赖并安装 Tablib:
pip install -r requirements.txt python setup.py install
通过以上步骤,你可以成功安装并使用 Tablib 来处理各种格式的表格数据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
527
3.73 K
Ascend Extension for PyTorch
Python
336
400
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
882
589
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
170
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246