解决Fairseq中Hubert模型导出ONNX时的广播维度问题
2025-05-04 16:20:39作者:尤辰城Agatha
问题背景
在使用Fairseq框架中的Hubert语音模型时,开发者经常需要将训练好的PyTorch模型导出为ONNX格式以便部署。然而在实际操作过程中,会遇到一个典型的维度广播错误,导致ONNX模型无法正常推理。
错误现象
当尝试将Hubert模型导出为ONNX格式后,在ONNX Runtime中运行推理时会出现以下错误:
[ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running Where node.
Name:'/encoder/Where' Status Message: /encoder/Where: condition operand cannot broadcast on dim 1
Condition Shape: {1,100}, X Shape: {}, Y Shape: {1,100,768}
这个错误表明在模型的计算图中,Where操作符在进行条件判断时遇到了维度不匹配的问题,无法在维度1上进行广播。
问题根源分析
经过深入分析,这个问题主要源于以下几个方面:
- 原始模型结构复杂性:Hubert模型内部包含复杂的注意力机制和掩码处理逻辑
- 维度广播规则差异:PyTorch和ONNX在维度广播规则上存在细微差别
- padding_mask处理:原始实现中对padding_mask的处理方式在ONNX导出时不够友好
解决方案
通过修改模型适配器(HuberAdapter)的实现方式,可以成功解决这个问题。以下是改进后的适配器实现:
class HuberAdapter(torch.nn.Module):
def __init__(self, model):
super(HuberAdapter, self).__init__()
self.model = model
def forward(self, feats):
return self.model(
source=feats,
output_layer=12,
features_only=True,
mask=False
)['x']
这个改进方案的关键点在于:
- 简化输入参数:去除了padding_mask作为显式输入参数
- 直接调用模型:使用model的直接调用方式而非extract_features方法
- 明确输出格式:指定features_only=True和mask=False来简化输出结构
实施步骤
- 首先加载预训练的Hubert模型
- 创建改进后的适配器类
- 准备输入特征张量
- 使用torch.onnx.export进行模型导出
完整的导出代码如下:
from fairseq import checkpoint_utils
import torch
# 加载预训练模型
hubert, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = hubert[0].half()
# 创建适配器
adapter = HuberAdapter(hubert_model)
# 导出ONNX模型
torch.onnx.export(
adapter.cuda(),
feats.cuda(),
"hubert.onnx",
input_names=["feats"],
output_names=["logits"],
dynamic_axes={"feats": {0: "seq"}},
opset_version=14,
do_constant_folding=True,
)
性能考量
虽然文中提到尚未进行详细的性能对比测试,但根据经验,ONNX格式的模型通常能带来以下优势:
- 推理速度提升:ONNX Runtime针对不同硬件进行了优化
- 跨平台兼容性:可在多种推理引擎上运行
- 内存效率:通常比原始PyTorch模型占用更少内存
总结
通过修改模型适配器的实现方式,我们成功解决了Hubert模型导出ONNX时的维度广播问题。这个解决方案不仅适用于Hubert模型,对于其他基于Fairseq框架的语音模型也有参考价值。在实际应用中,建议开发者根据具体需求调整输出层和特征提取参数,以获得最佳的性能和精度平衡。
对于需要进一步优化推理性能的场景,可以考虑:
- 使用量化技术减小模型大小
- 针对特定硬件进行优化
- 进行详细的性能基准测试
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881