GUDHI/TDA-tutorial 项目教程
1. 项目介绍
GUDHI/TDA-tutorial 是一个用于实践拓扑数据分析(Topological Data Analysis, TDA)的 Jupyter Notebook 集合。该项目结合了 Python 的 Gudhi 库以及流行的机器学习和数据科学库,旨在帮助用户理解和应用 TDA 技术。TDA 是一种新兴且快速发展的领域,提供了一系列新的拓扑和几何工具,用于从复杂数据中推断出相关特征。
2. 项目快速启动
安装 Gudhi 库
首先,确保你已经安装了 Python 环境。然后,你可以通过以下命令安装 Gudhi 库:
pip install gudhi
或者,如果你使用 conda,可以通过以下命令安装:
conda install -c conda-forge gudhi
运行 Jupyter Notebook
克隆项目仓库并启动 Jupyter Notebook:
git clone https://github.com/GUDHI/TDA-tutorial.git
cd TDA-tutorial
jupyter notebook
在 Jupyter Notebook 中,你可以选择任何一个 Notebook 开始学习和实践 TDA。
3. 应用案例和最佳实践
案例1:简单树和单纯复形
TDA 通常旨在从点云中提取拓扑签名,这些点云可以在 或一般度量空间中。通过研究点云的拓扑结构,我们可以了解点云的拓扑特征。Gudhi 库提供了简单树(Simplex Tree)数据结构,用于表示过滤单纯复形。
案例2:持久同调与持久图
持久同调是一种强大的工具,用于计算、研究和编码嵌套单纯复形和拓扑空间的多尺度拓扑特征。持久图(Persistence Diagram)是持久同调的一种表示形式,用于可视化和分析拓扑特征的演化。
案例3:机器学习与 TDA 结合
GudHI 库还提供了与机器学习结合的工具,例如 ATOL 和 Perslay。这些工具可以帮助用户将 TDA 与深度学习结合,从而在复杂数据中提取更有意义的特征。
4. 典型生态项目
ATOL: 自动拓扑学习
ATOL 是一个与 Gudhi 相关的库,用于自动拓扑学习。它可以帮助用户在数据中自动发现拓扑特征,并将其用于机器学习任务。
Perslay: 持久图神经网络层
Perslay 是一个用于持久图的神经网络层,它可以将持久图作为输入,并输出有意义的特征表示。Perslay 可以与深度学习框架结合,用于复杂数据的分析和处理。
通过这些生态项目,用户可以进一步扩展 Gudhi 库的功能,并将其应用于更广泛的领域。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00