GUDHI/TDA-tutorial 项目教程
1. 项目介绍
GUDHI/TDA-tutorial 是一个用于实践拓扑数据分析(Topological Data Analysis, TDA)的 Jupyter Notebook 集合。该项目结合了 Python 的 Gudhi 库以及流行的机器学习和数据科学库,旨在帮助用户理解和应用 TDA 技术。TDA 是一种新兴且快速发展的领域,提供了一系列新的拓扑和几何工具,用于从复杂数据中推断出相关特征。
2. 项目快速启动
安装 Gudhi 库
首先,确保你已经安装了 Python 环境。然后,你可以通过以下命令安装 Gudhi 库:
pip install gudhi
或者,如果你使用 conda,可以通过以下命令安装:
conda install -c conda-forge gudhi
运行 Jupyter Notebook
克隆项目仓库并启动 Jupyter Notebook:
git clone https://github.com/GUDHI/TDA-tutorial.git
cd TDA-tutorial
jupyter notebook
在 Jupyter Notebook 中,你可以选择任何一个 Notebook 开始学习和实践 TDA。
3. 应用案例和最佳实践
案例1:简单树和单纯复形
TDA 通常旨在从点云中提取拓扑签名,这些点云可以在 或一般度量空间中。通过研究点云的拓扑结构,我们可以了解点云的拓扑特征。Gudhi 库提供了简单树(Simplex Tree)数据结构,用于表示过滤单纯复形。
案例2:持久同调与持久图
持久同调是一种强大的工具,用于计算、研究和编码嵌套单纯复形和拓扑空间的多尺度拓扑特征。持久图(Persistence Diagram)是持久同调的一种表示形式,用于可视化和分析拓扑特征的演化。
案例3:机器学习与 TDA 结合
GudHI 库还提供了与机器学习结合的工具,例如 ATOL 和 Perslay。这些工具可以帮助用户将 TDA 与深度学习结合,从而在复杂数据中提取更有意义的特征。
4. 典型生态项目
ATOL: 自动拓扑学习
ATOL 是一个与 Gudhi 相关的库,用于自动拓扑学习。它可以帮助用户在数据中自动发现拓扑特征,并将其用于机器学习任务。
Perslay: 持久图神经网络层
Perslay 是一个用于持久图的神经网络层,它可以将持久图作为输入,并输出有意义的特征表示。Perslay 可以与深度学习框架结合,用于复杂数据的分析和处理。
通过这些生态项目,用户可以进一步扩展 Gudhi 库的功能,并将其应用于更广泛的领域。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









