dstack项目中的metrics统计异常问题分析与解决方案
问题描述
在dstack项目中,用户在使用dstack stats命令查看运行实例的指标数据时,偶尔会遇到无法获取到任何指标数据的情况。具体表现为命令输出中CPU、内存和GPU使用率全部显示为"-",而实际上运行实例已经正常运行了一段时间。
问题重现步骤
- 首先启动dstack服务器(可使用PostgreSQL或dstack Sky)
- 准备一个包含name字段的运行配置
- 故意使用不存在的区域参数运行配置,使其启动失败
- 再次正常运行该配置
- 等待实例运行至少30秒后,使用
dstack stats命令查看指标
技术分析
经过深入分析,发现该问题的根本原因在于指标查询逻辑存在缺陷。当系统查询运行实例的指标数据时,会错误地从历史运行记录中查找同名的运行实例指标,而不是当前正在运行的实例。
具体来说,系统存在以下两个关键问题点:
-
同名运行实例冲突:当用户多次运行相同名称的配置时,系统可能会错误地关联到之前的运行记录,特别是那些启动失败或已经结束运行的实例。
-
指标数据过期:对于已经结束的运行实例,如果其结束时间超过了
DSTACK_SERVER_METRICS_TTL_SECONDS设置的值,其指标数据会被自动清理,导致查询时无法获取。
解决方案
针对这个问题,开发团队已经提出了明确的解决方案:
-
精确匹配当前运行实例:修改指标查询逻辑,确保总是查询当前活跃运行实例的指标数据,而不是简单地通过名称匹配。
-
临时解决方案:在修复发布前,用户可以采用以下临时方案:
- 为每次运行使用唯一名称
- 在运行配置中不设置name字段,让系统自动生成唯一名称
最佳实践建议
为了避免类似问题,建议用户在使用dstack时遵循以下最佳实践:
-
避免重复使用运行名称:特别是对于需要多次运行的配置,最好让系统自动生成名称或使用包含时间戳的唯一名称。
-
监控指标获取情况:在运行实例启动后,定期检查指标数据是否正常获取,以便及时发现类似问题。
-
保持软件更新:及时更新到最新版本的dstack,以获取最新的功能改进和问题修复。
总结
这个metrics统计异常问题虽然不会影响实例的实际运行,但会影响用户对实例运行状态的监控。通过理解问题的根本原因和解决方案,用户可以更好地使用dstack平台,并在遇到类似问题时能够快速定位和解决。开发团队也将在后续版本中彻底修复这个问题,提升用户体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00