ChatGLM3分词器中的重复Token现象解析
2025-05-16 06:34:12作者:宣海椒Queenly
引言
在使用ChatGLM3模型时,开发者可能会观察到分词器(tokenizer)中存在一些看似重复的token。例如,"首页"这个词语在tokenizer.model文件中出现了多次,对应不同的token ID。这种现象初看可能令人困惑,但实际上反映了ChatGLM3分词器设计的精妙之处。
现象描述
通过分析ChatGLM3的分词器模型,我们可以发现:
- 同一个中文词语(如"首页")可能对应多个不同的token ID
- 这些token ID在解码(decoding)后显示相同的内容
- 但在实际编码(encoding)过程中,会根据词语在句子中的位置选择不同的token ID
技术原理
这种现象源于ChatGLM3分词器的特殊设计:
- 位置感知分词:ChatGLM3的分词器能够感知词语在句子中的位置,特别是是否为句子开头
- 特殊标记处理:解码时会自动去除表示位置信息的特殊符号,导致不同token ID解码后显示相同
- 底层实现:基于SentencePiece的分词器实现,但加入了额外的位置处理逻辑
实际案例分析
通过以下代码示例可以清楚地看到这一机制:
from tokenization_chatglm import ChatGLMTokenizer
tok = ChatGLMTokenizer.from_pretrained('./', trust_remote_code=True)
# 两个不同的token ID都解码为"首页"
print(tok.decode(33880)) # 输出: 首页
print(tok.decode(45453)) # 输出: 首页
# 实际编码时的差异
print(tok("首页你好").input_ids) # 包含45453(句首的"首页")
print(tok("你好首页").input_ids) # 包含33880(非句首的"首页")
对模型训练的影响
这种设计对模型训练有几个重要影响:
- 序列处理:必须保持完整的句子结构,不能随意截断
- 上下文保留:确保词语的位置信息不会在分块处理时丢失
- 训练效率:可能需要更大的上下文窗口来保持语义完整性
最佳实践建议
- 避免直接比较解码结果:解码后的相同字符串可能对应不同token
- 使用原始token ID:需要区分词语位置时应直接使用token ID
- 完整处理句子:预处理时应保持句子完整性,避免随意分割
- 调试工具:推荐使用SentencePiece工具直接解析tokenizer.model文件
结论
ChatGLM3分词器中看似重复的token实际上是其位置感知分词策略的体现。这种设计增强了模型对词语位置的敏感性,有助于提升语言理解能力。开发者在使用时应充分理解这一特性,避免误用导致的模型性能下降。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
469
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
716
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
208
83
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1