ChatGLM3微调后推理时NotImplementedError问题分析与解决方案
问题背景
在使用ChatGLM3进行LoRA微调后,许多开发者在尝试运行推理脚本时遇到了NotImplementedError异常。这个问题主要出现在加载微调后的模型进行推理时,系统提示set_input_embeddings方法未实现。本文将深入分析该问题的成因,并提供多种可行的解决方案。
问题现象
当开发者使用finetune_demo/finetune_hf.py完成LoRA微调后,运行finetune_demo/inference_hf.py进行推理时,会遇到以下错误链:
- 首先尝试加载微调后的模型
- 系统自动调用resize_token_embeddings方法
- 该方法内部尝试调用set_input_embeddings
- 最终抛出NotImplementedError异常
根本原因分析
经过深入分析,这个问题由多个因素共同导致:
-
Peft库的自动调整机制:Peft库在加载适配器模型时,会自动检查并尝试调整token嵌入层的大小,以确保与tokenizer的词汇表大小匹配。
-
ChatGLM模型实现特殊性:ChatGLM模型没有实现标准的set_input_embeddings方法,而是使用了自定义的嵌入层实现方式。
-
版本兼容性问题:不同版本的transformers和peft库在处理这类特殊模型时行为不一致,导致部分开发者能复现问题而部分不能。
-
词汇表大小变化:微调过程中,tokenizer的词汇表大小可能会发生变化(从65024变为64798),触发了嵌入层调整的需求。
解决方案
方案一:修改Peft库源代码
- 找到peft/auto.py文件(通常在Python环境的site-packages/peft目录下)
- 修改约124行处的tokenizer加载代码,添加trust_remote_code参数传递:
# 修改前
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
# 修改后
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
- 同时可以注释掉resize_token_embeddings的调用(约126行)
方案二:为ChatGLM模型添加缺失方法
在ChatGLM3的模型实现文件(通常是modeling_chatglm.py)中,为ChatGLMModel类添加以下方法:
def set_input_embeddings(self, value):
self.embedding.word_embeddings = value
方案三:使用特定版本组合
经过验证,以下库版本组合可以避免此问题:
- peft==0.8.1
- transformers==4.32.1
可以通过以下命令安装特定版本:
pip install peft==0.8.1 transformers==4.32.1
技术细节解析
为什么会出现词汇表大小变化?
虽然tokenizer.model文件没有变化,但微调过程中可能会对特殊token进行处理,导致实际使用的词汇表大小发生变化。这是正常现象,不会影响模型的核心功能。
为什么部分开发者无法复现?
这主要与以下因素有关:
- 使用的transformers和peft库版本不同
- 是否对模型代码进行过自定义修改
- 微调时使用的具体参数和数据集
最佳实践建议
-
版本控制:建立明确的依赖版本控制,推荐使用requirements.txt或conda环境文件。
-
模型检查:微调后检查adapter_config.json中的base_model_name_or_path是否正确指向原始模型。
-
逐步验证:先验证原始模型的加载和推理,再测试微调后的模型。
-
错误处理:在推理脚本中添加适当的错误处理和日志记录,便于问题定位。
总结
ChatGLM3微调后推理出现的NotImplementedError问题,本质上是由于模型特殊实现与Peft库标准流程之间的兼容性问题。通过本文提供的多种解决方案,开发者可以根据自己的实际情况选择最适合的方法。随着ChatGLM3和Peft库的持续更新,这个问题可能会在未来的版本中得到官方解决。在此之前,理解问题本质并掌握解决方案将有助于开发者更顺畅地使用ChatGLM3进行微调和部署。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00