Stellar-Core交易验证性能优化:后台预处理与快速失败机制
2025-06-25 23:29:33作者:俞予舒Fleming
在分布式账本系统Stellar-Core中,交易处理性能一直是影响系统吞吐量和响应速度的关键因素。近期开发团队针对交易验证流程进行了深度优化,通过引入后台预处理机制显著提升了系统性能。本文将详细解析这项优化的技术实现与设计考量。
背景与挑战
传统Stellar-Core的交易处理流程中,所有交易验证工作都在主线程同步执行,这导致两个主要性能瓶颈:
- 签名验证等CPU密集型操作阻塞事件循环
- 无效交易仍会消耗完整的验证资源
特别是在切换到BucketList快照机制后,LedgerTxn内部条目缓存的丢失进一步放大了性能问题。团队需要设计一个既能保持系统稳定性,又能显著提升处理效率的解决方案。
技术方案演进
开发团队提出了三个渐进式的优化方案:
方案一:签名验证后台化
- 仅将密码学签名验证移至后台线程
- 保持现有验证流程不变
- 优势:改动最小,线程安全性最容易保证
方案二:完整checkValid后台化
- 将整个TransactionFrame::checkValid移至后台
- 需要重构避免直接访问Application对象
- 优势:覆盖更多验证逻辑
方案三:全流程后台化
- 将TransactionQueue::canAdd整个移至后台
- 需要处理复杂的线程同步问题
- 优势:保持现有检查顺序
经过性能剖析和可行性评估,团队最终选择了更具突破性的方案——完全解耦覆盖层(overlay)与交易队列的依赖关系。
核心创新实现
独立交易池设计
- 覆盖层维护专属的交易内存池
- 采用无锁数据结构避免线程竞争
- 实现交易验证与转发的完全并行化
分层验证架构
- 快速失败层:在后台线程执行轻量级检查(签名、基础结构)
- 严格验证层:在主线程执行状态相关检查
- 异步洪水传播:有效交易立即进入传播通道
性能优化关键点
- 签名缓存复用:后台验证结果主线程直接复用
- 验证流水线:不同阶段验证任务并行执行
- 资源隔离:网络IO与CPU计算负载分离
技术挑战与解决方案
线程安全保证
- 使用线程局部存储(TLS)管理验证上下文
- 快照机制确保账本状态一致性
- 原子操作维护共享数据结构
性能平衡
- 动态批处理机制平衡洪水传播频率
- 后台线程池大小根据系统负载动态调整
- 主线程优先级保障关键路径延迟
实际效果
该优化已通过主网压力测试验证:
- 无效交易处理耗时降低90%+
- 网络洪水传播延迟减少50%
- 主线程负载下降40%
- 系统整体TPS提升35%
这项改进不仅显著提升了Stellar网络的性能表现,其分层验证架构也为未来更复杂的智能合约验证奠定了基础。通过精心的线程模型设计和资源隔离,在保持系统稳定性的同时实现了质的性能飞跃。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19