Stellar-Core交易验证性能优化:后台预处理与快速失败机制
2025-06-25 19:30:16作者:俞予舒Fleming
在分布式账本系统Stellar-Core中,交易处理性能一直是影响系统吞吐量和响应速度的关键因素。近期开发团队针对交易验证流程进行了深度优化,通过引入后台预处理机制显著提升了系统性能。本文将详细解析这项优化的技术实现与设计考量。
背景与挑战
传统Stellar-Core的交易处理流程中,所有交易验证工作都在主线程同步执行,这导致两个主要性能瓶颈:
- 签名验证等CPU密集型操作阻塞事件循环
- 无效交易仍会消耗完整的验证资源
特别是在切换到BucketList快照机制后,LedgerTxn内部条目缓存的丢失进一步放大了性能问题。团队需要设计一个既能保持系统稳定性,又能显著提升处理效率的解决方案。
技术方案演进
开发团队提出了三个渐进式的优化方案:
方案一:签名验证后台化
- 仅将密码学签名验证移至后台线程
- 保持现有验证流程不变
- 优势:改动最小,线程安全性最容易保证
方案二:完整checkValid后台化
- 将整个TransactionFrame::checkValid移至后台
- 需要重构避免直接访问Application对象
- 优势:覆盖更多验证逻辑
方案三:全流程后台化
- 将TransactionQueue::canAdd整个移至后台
- 需要处理复杂的线程同步问题
- 优势:保持现有检查顺序
经过性能剖析和可行性评估,团队最终选择了更具突破性的方案——完全解耦覆盖层(overlay)与交易队列的依赖关系。
核心创新实现
独立交易池设计
- 覆盖层维护专属的交易内存池
- 采用无锁数据结构避免线程竞争
- 实现交易验证与转发的完全并行化
分层验证架构
- 快速失败层:在后台线程执行轻量级检查(签名、基础结构)
- 严格验证层:在主线程执行状态相关检查
- 异步洪水传播:有效交易立即进入传播通道
性能优化关键点
- 签名缓存复用:后台验证结果主线程直接复用
- 验证流水线:不同阶段验证任务并行执行
- 资源隔离:网络IO与CPU计算负载分离
技术挑战与解决方案
线程安全保证
- 使用线程局部存储(TLS)管理验证上下文
- 快照机制确保账本状态一致性
- 原子操作维护共享数据结构
性能平衡
- 动态批处理机制平衡洪水传播频率
- 后台线程池大小根据系统负载动态调整
- 主线程优先级保障关键路径延迟
实际效果
该优化已通过主网压力测试验证:
- 无效交易处理耗时降低90%+
- 网络洪水传播延迟减少50%
- 主线程负载下降40%
- 系统整体TPS提升35%
这项改进不仅显著提升了Stellar网络的性能表现,其分层验证架构也为未来更复杂的智能合约验证奠定了基础。通过精心的线程模型设计和资源隔离,在保持系统稳定性的同时实现了质的性能飞跃。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197