Google Cloud Java客户端库实现Vertex AI多模态嵌入功能实践
2025-07-06 15:17:14作者:胡易黎Nicole
背景介绍
Google Cloud的Vertex AI平台提供了强大的多模态嵌入模型multimodalembedding@001,能够同时处理文本和图像数据生成嵌入向量。对于Java开发者而言,了解如何通过官方Java客户端库调用这些功能至关重要。
核心功能解析
多模态嵌入模型主要提供以下能力:
- 文本嵌入:将自然语言文本转换为向量表示
- 图像嵌入:处理图像二进制数据生成特征向量
- 跨模态检索:支持文本到图像或图像到文本的相似性搜索
Java实现方案
环境准备
使用前需要确保:
- 已创建Google Cloud项目并启用Vertex AI API
- 配置好应用默认凭据或服务账号密钥
- 添加最新版google-cloud-aiplatform依赖
图像嵌入实现代码
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Base64;
public class ImageEmbeddingGenerator {
private static final String MODEL_ID = "multimodalembedding@001";
public static void main(String[] args) throws Exception {
String project = "your-project-id";
String location = "us-central1";
String imagePath = "path/to/image.jpg";
// 初始化客户端
PredictionServiceSettings settings = PredictionServiceSettings.newBuilder()
.setEndpoint(EndpointName.of(project, location, "prediction-"+MODEL_ID).toString())
.build();
try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
// 读取并编码图像
byte[] imageBytes = Files.readAllBytes(Paths.get(imagePath));
String encodedImage = Base64.getEncoder().encodeToString(imageBytes);
// 构建请求JSON
String instance = String.format("""
{
"image": {
"bytesBase64Encoded": "%s"
}
}
""", encodedImage);
Value.Builder instanceValue = Value.newBuilder();
JsonFormat.parser().merge(instance, instanceValue);
// 发送预测请求
PredictResponse response = client.predict(
EndpointName.of(project, location, MODEL_ID).toString(),
List.of(instanceValue.build()),
Value.newBuilder().build());
// 处理响应
Value embeddings = response.getPredictions(0);
System.out.println("生成的嵌入向量:" + embeddings);
}
}
}
关键注意事项
- 区域选择:确保使用的区域支持所需模型
- 图像预处理:输入图像需转换为Base64编码格式
- 性能优化:批量处理时可合并多个实例到单个请求
- 错误处理:需要捕获和处理ApiException等异常
典型应用场景
- 视觉搜索系统
- 跨模态内容推荐
- 智能相册分类
- 电子商务产品匹配
扩展建议
对于生产环境使用,建议:
- 实现请求重试机制
- 添加监控指标
- 考虑使用异步客户端
- 实施结果缓存策略
通过合理使用Vertex AI的多模态嵌入功能,开发者可以构建强大的跨模态AI应用,而Java客户端库提供了与企业现有技术栈集成的便捷途径。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758