NLopt 非线性优化库使用教程
2024-10-10 14:53:39作者:戚魁泉Nursing
1、项目介绍
NLopt 是一个用于非线性优化的开源库,支持全局和局部优化算法,适用于有约束和无约束的优化问题。NLopt 提供了一个统一的接口,封装了多种开源的非线性优化算法,使得用户可以方便地选择和使用不同的优化方法。NLopt 支持多种编程语言,包括 C/C++、Python、Fortran、Matlab、OCaml、GNU Guile、GNU R、Lua、Rust 和 Julia 等。
NLopt 的主要特点包括:
- 支持多种优化算法,包括梯度法和无梯度法。
- 提供 C API,方便集成到各种编程语言中。
- 支持全局和局部优化。
- 支持有约束和无约束的优化问题。
2、项目快速启动
安装 NLopt
首先,从 GitHub 克隆 NLopt 的源代码:
git clone https://github.com/stevengj/nlopt.git
cd nlopt
然后,使用 CMake 构建和安装 NLopt:
mkdir build
cd build
cmake ..
make
sudo make install
使用 NLopt 进行优化
以下是一个简单的 C 语言示例,展示如何使用 NLopt 进行无约束优化:
#include <stdio.h>
#include <nlopt.h>
double myfunc(unsigned n, const double *x, double *grad, void *my_func_data) {
if (grad) {
grad[0] = 0.0;
grad[1] = 0.5 / sqrt(x[1]);
}
return sqrt(x[1]);
}
int main() {
nlopt_opt opt;
opt = nlopt_create(NLOPT_LN_COBYLA, 2);
nlopt_set_min_objective(opt, myfunc, NULL);
double lb[2] = {0, 0};
nlopt_set_lower_bounds(opt, lb);
double x[2] = {1.234, 5.678};
double minf;
if (nlopt_optimize(opt, x, &minf) < 0) {
printf("nlopt failed!\n");
} else {
printf("found minimum at f(%g,%g) = %g\n", x[0], x[1], minf);
}
nlopt_destroy(opt);
return 0;
}
编译并运行该程序:
gcc -o nlopt_example nlopt_example.c -lnlopt -lm
./nlopt_example
3、应用案例和最佳实践
应用案例
NLopt 广泛应用于科学计算、工程优化、机器学习等领域。例如,在机器学习中,NLopt 可以用于优化模型的超参数,以提高模型的性能。在工程设计中,NLopt 可以用于优化结构设计,以最小化材料成本或最大化结构强度。
最佳实践
- 选择合适的优化算法:NLopt 提供了多种优化算法,用户应根据具体问题的特点选择合适的算法。例如,对于无梯度信息的问题,可以选择无梯度算法如 COBYLA。
- 设置合理的初始值和边界条件:优化结果很大程度上依赖于初始值和边界条件的设置。合理的初始值和边界条件可以加速优化过程并提高优化结果的准确性。
- 处理约束条件:对于有约束的优化问题,NLopt 提供了多种处理约束的方法。用户应根据约束的类型选择合适的方法。
4、典型生态项目
NLopt 作为一个通用的非线性优化库,与其他开源项目结合使用可以发挥更大的作用。以下是一些典型的生态项目:
- SciPy:Python 中的科学计算库,提供了与 NLopt 的接口,方便在 Python 中进行非线性优化。
- Gurobi:商业优化求解器,与 NLopt 结合使用可以处理更复杂的优化问题。
- OpenMDAO:用于多学科优化的开源框架,NLopt 可以作为其中的一个优化算法使用。
通过这些生态项目的结合,NLopt 可以应用于更广泛的优化问题,并提供更强大的优化能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868