ROCm 6.4在Ubuntu 24.04安装中的APT源问题解析
在Ubuntu 24.04(Noble Numbat)系统上安装AMD ROCm 6.4版本时,部分用户可能会遇到APT软件源相关的错误提示。本文将详细分析这一问题的成因,并提供完整的解决方案。
问题现象
当用户在Ubuntu 24.04系统中执行sudo apt update
命令时,系统会报告如下错误信息:
E: The repository 'https://repo.radeon.com/amdgpu/6.4 noble Release' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disabled by default.
这个错误表明系统无法从AMD的官方软件仓库中获取必要的Release文件,导致APT包管理器无法正常工作。
问题根源
经过分析,这个问题主要由以下几个因素导致:
-
软件源配置不完整:AMD官方仓库中针对Ubuntu 24.04的6.4版本ROCm可能暂时缺少完整的Release文件。
-
多版本残留冲突:系统中可能同时存在ROCm 6.4.0和6.4.1版本的残留配置,导致APT源混乱。
-
网络连接问题:某些情况下,网络连接问题可能导致无法正确获取仓库元数据。
完整解决方案
要彻底解决这个问题,建议按照以下步骤操作:
1. 完全卸载现有ROCm安装
首先需要清理系统中可能存在的所有ROCm版本残留:
sudo amdgpu-install --uninstall --rocmrelease=all
sudo apt purge amdgpu-install
sudo apt autoremove
2. 重新安装ROCm 6.4.1
执行以下命令进行全新安装:
wget https://repo.radeon.com/amdgpu-install/6.4.1/ubuntu/noble/amdgpu-install_6.4.60401-1_all.deb
sudo apt install ./amdgpu-install_6.4.60401-1_all.deb
sudo apt update
3. 安装必要依赖
确保系统具备所有必要的依赖项:
sudo apt install "linux-headers-$(uname -r)" "linux-modules-extra-$(uname -r)"
sudo apt install python3-setuptools python3-wheel
4. 配置用户权限
将当前用户添加到必要的用户组:
sudo usermod -a -G render,video $LOGNAME
5. 完成ROCm安装
最后执行完整安装:
sudo apt install rocm amdgpu-dkms
验证安装
安装完成后,可以通过以下命令验证ROCm是否正常工作:
/opt/rocm/bin/rocminfo
该命令应显示系统中可用的AMD GPU设备信息,包括计算单元数量、内存配置等详细信息。
技术背景
ROCm(Radeon Open Compute)是AMD推出的开源GPU计算平台,专为高性能计算和机器学习工作负载设计。在Ubuntu系统上,它通过APT软件包管理系统进行分发和更新。
APT系统依赖于仓库中的Release文件来验证软件包的完整性和真实性。当这个文件缺失时,出于安全考虑,APT会拒绝从该仓库更新或安装软件包。这就是用户遇到错误信息的根本原因。
总结
通过完全卸载旧版本并执行全新安装,可以有效解决Ubuntu 24.04上ROCm 6.4的APT源问题。AMD官方已确认该问题为临时性的仓库配置问题,目前最新版本的安装包已经包含完整的Release文件。对于需要使用AMD GPU进行高性能计算的用户,建议按照本文提供的完整步骤进行操作,以确保获得稳定可靠的ROCm运行环境。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









