ROCm 6.4在Ubuntu 24.04安装中的APT源问题解析
在Ubuntu 24.04(Noble Numbat)系统上安装AMD ROCm 6.4版本时,部分用户可能会遇到APT软件源相关的错误提示。本文将详细分析这一问题的成因,并提供完整的解决方案。
问题现象
当用户在Ubuntu 24.04系统中执行sudo apt update命令时,系统会报告如下错误信息:
E: The repository 'https://repo.radeon.com/amdgpu/6.4 noble Release' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disabled by default.
这个错误表明系统无法从AMD的官方软件仓库中获取必要的Release文件,导致APT包管理器无法正常工作。
问题根源
经过分析,这个问题主要由以下几个因素导致:
- 
软件源配置不完整:AMD官方仓库中针对Ubuntu 24.04的6.4版本ROCm可能暂时缺少完整的Release文件。
 - 
多版本残留冲突:系统中可能同时存在ROCm 6.4.0和6.4.1版本的残留配置,导致APT源混乱。
 - 
网络连接问题:某些情况下,网络连接问题可能导致无法正确获取仓库元数据。
 
完整解决方案
要彻底解决这个问题,建议按照以下步骤操作:
1. 完全卸载现有ROCm安装
首先需要清理系统中可能存在的所有ROCm版本残留:
sudo amdgpu-install --uninstall --rocmrelease=all
sudo apt purge amdgpu-install
sudo apt autoremove
2. 重新安装ROCm 6.4.1
执行以下命令进行全新安装:
wget https://repo.radeon.com/amdgpu-install/6.4.1/ubuntu/noble/amdgpu-install_6.4.60401-1_all.deb
sudo apt install ./amdgpu-install_6.4.60401-1_all.deb
sudo apt update
3. 安装必要依赖
确保系统具备所有必要的依赖项:
sudo apt install "linux-headers-$(uname -r)" "linux-modules-extra-$(uname -r)"
sudo apt install python3-setuptools python3-wheel
4. 配置用户权限
将当前用户添加到必要的用户组:
sudo usermod -a -G render,video $LOGNAME
5. 完成ROCm安装
最后执行完整安装:
sudo apt install rocm amdgpu-dkms
验证安装
安装完成后,可以通过以下命令验证ROCm是否正常工作:
/opt/rocm/bin/rocminfo
该命令应显示系统中可用的AMD GPU设备信息,包括计算单元数量、内存配置等详细信息。
技术背景
ROCm(Radeon Open Compute)是AMD推出的开源GPU计算平台,专为高性能计算和机器学习工作负载设计。在Ubuntu系统上,它通过APT软件包管理系统进行分发和更新。
APT系统依赖于仓库中的Release文件来验证软件包的完整性和真实性。当这个文件缺失时,出于安全考虑,APT会拒绝从该仓库更新或安装软件包。这就是用户遇到错误信息的根本原因。
总结
通过完全卸载旧版本并执行全新安装,可以有效解决Ubuntu 24.04上ROCm 6.4的APT源问题。AMD官方已确认该问题为临时性的仓库配置问题,目前最新版本的安装包已经包含完整的Release文件。对于需要使用AMD GPU进行高性能计算的用户,建议按照本文提供的完整步骤进行操作,以确保获得稳定可靠的ROCm运行环境。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00