ROCm 6.4在Ubuntu 24.04安装中的APT源问题解析
在Ubuntu 24.04(Noble Numbat)系统上安装AMD ROCm 6.4版本时,部分用户可能会遇到APT软件源相关的错误提示。本文将详细分析这一问题的成因,并提供完整的解决方案。
问题现象
当用户在Ubuntu 24.04系统中执行sudo apt update命令时,系统会报告如下错误信息:
E: The repository 'https://repo.radeon.com/amdgpu/6.4 noble Release' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disabled by default.
这个错误表明系统无法从AMD的官方软件仓库中获取必要的Release文件,导致APT包管理器无法正常工作。
问题根源
经过分析,这个问题主要由以下几个因素导致:
-
软件源配置不完整:AMD官方仓库中针对Ubuntu 24.04的6.4版本ROCm可能暂时缺少完整的Release文件。
-
多版本残留冲突:系统中可能同时存在ROCm 6.4.0和6.4.1版本的残留配置,导致APT源混乱。
-
网络连接问题:某些情况下,网络连接问题可能导致无法正确获取仓库元数据。
完整解决方案
要彻底解决这个问题,建议按照以下步骤操作:
1. 完全卸载现有ROCm安装
首先需要清理系统中可能存在的所有ROCm版本残留:
sudo amdgpu-install --uninstall --rocmrelease=all
sudo apt purge amdgpu-install
sudo apt autoremove
2. 重新安装ROCm 6.4.1
执行以下命令进行全新安装:
wget https://repo.radeon.com/amdgpu-install/6.4.1/ubuntu/noble/amdgpu-install_6.4.60401-1_all.deb
sudo apt install ./amdgpu-install_6.4.60401-1_all.deb
sudo apt update
3. 安装必要依赖
确保系统具备所有必要的依赖项:
sudo apt install "linux-headers-$(uname -r)" "linux-modules-extra-$(uname -r)"
sudo apt install python3-setuptools python3-wheel
4. 配置用户权限
将当前用户添加到必要的用户组:
sudo usermod -a -G render,video $LOGNAME
5. 完成ROCm安装
最后执行完整安装:
sudo apt install rocm amdgpu-dkms
验证安装
安装完成后,可以通过以下命令验证ROCm是否正常工作:
/opt/rocm/bin/rocminfo
该命令应显示系统中可用的AMD GPU设备信息,包括计算单元数量、内存配置等详细信息。
技术背景
ROCm(Radeon Open Compute)是AMD推出的开源GPU计算平台,专为高性能计算和机器学习工作负载设计。在Ubuntu系统上,它通过APT软件包管理系统进行分发和更新。
APT系统依赖于仓库中的Release文件来验证软件包的完整性和真实性。当这个文件缺失时,出于安全考虑,APT会拒绝从该仓库更新或安装软件包。这就是用户遇到错误信息的根本原因。
总结
通过完全卸载旧版本并执行全新安装,可以有效解决Ubuntu 24.04上ROCm 6.4的APT源问题。AMD官方已确认该问题为临时性的仓库配置问题,目前最新版本的安装包已经包含完整的Release文件。对于需要使用AMD GPU进行高性能计算的用户,建议按照本文提供的完整步骤进行操作,以确保获得稳定可靠的ROCm运行环境。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00