首页
/ Pandas时间序列处理完全指南

Pandas时间序列处理完全指南

2025-05-31 03:16:26作者:裴麒琰

时间序列数据处理是数据分析中非常重要的一个领域,pandas提供了强大而全面的时间序列处理功能。本文将深入介绍pandas中的时间序列处理能力,帮助读者掌握这一核心技能。

时间序列基础概念

pandas时间序列功能基于NumPy的datetime64timedelta64数据类型构建,整合了多种Python库的时间处理能力,并新增了大量实用功能。pandas主要处理四种时间相关概念:

  1. 日期时间(Datetimes) - 带时区支持的特定日期和时间,类似于Python标准库中的datetime.datetime
  2. 时间差(Timedeltas) - 绝对时间持续时间,类似于datetime.timedelta
  3. 时间段(Time spans) - 由时间点和关联频率定义的时间段
  4. 日期偏移(Date offsets) - 遵循日历算法的相对时间持续时间

时间序列核心功能

1. 时间解析与转换

pandas可以轻松解析各种格式的时间字符串:

import pandas as pd
import numpy as np
import datetime

# 多种时间格式解析
dti = pd.to_datetime(['1/1/2018', np.datetime64('2018-01-01'),
                     datetime.datetime(2018, 1, 1)])

2. 生成固定频率时间序列

# 生成3小时间隔的时间序列
dti = pd.date_range('2018-01-01', periods=3, freq='H')

3. 时区处理

# 本地化为UTC时区
dti = dti.tz_localize('UTC')
# 转换为太平洋时区
dti.tz_convert('US/Pacific')

4. 时间重采样

idx = pd.date_range('2018-01-01', periods=5, freq='H')
ts = pd.Series(range(len(idx)), index=idx)
# 2小时频率重采样求均值
ts.resample('2H').mean()

5. 日期时间运算

friday = pd.Timestamp('2018-01-05')
# 加1天
saturday = friday + pd.Timedelta('1 day')
# 加1个工作日(周五到周一)
monday = friday + pd.offsets.BDay()

时间戳与时间段的区别

pandas提供了两种主要的时间表示方式:

  1. 时间戳(Timestamp) - 表示特定时间点
  2. 时间段(Period) - 表示时间范围
# 时间戳示例
pd.Timestamp('2012-05-01')

# 时间段示例(默认频率为月)
pd.Period('2011-01')

时间转换技巧

1. 字符串转时间戳

pd.to_datetime(['2005/11/23', '2010.12.31'])

2. 处理欧洲日期格式

pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)

3. 从DataFrame多列组合时间

df = pd.DataFrame({
    'year': [2015, 2016],
    'month': [2, 3],
    'day': [4, 5]
})
pd.to_datetime(df)

4. 处理无效数据

# 忽略无效数据
pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
# 将无效数据转为NaT
pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')

时间序列索引操作

时间序列索引(DatetimeIndex)提供了强大的功能:

rng = pd.date_range('2011-01-01', '2012-01-01', freq='BM')
ts = pd.Series(np.random.randn(len(rng)), index=rng)

# 部分字符串索引
ts['2011-10']

时间序列限制

由于pandas使用纳秒精度表示时间戳,64位整数表示的时间范围大约为584年:

pd.Timestamp.min  # 1677-09-21 00:12:43.145225
pd.Timestamp.max  # 2262-04-11 23:47:16.854775807

最佳实践建议

  1. 尽量使用to_datetime()函数而非直接使用Timestamp构造函数,因为它提供了更多解析选项
  2. 处理欧洲日期格式时要小心使用dayfirst参数
  3. 对于大规模时间序列,指定format参数可以显著提高解析速度
  4. 时间序列数据通常应该以时间作为索引
  5. 注意时间戳的精度限制,特别是处理历史或未来很远的数据时

通过掌握pandas的这些时间序列处理功能,您可以高效地处理各种时间相关的数据分析任务。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133