Pandas时间序列处理完全指南
2025-05-31 05:26:49作者:裴麒琰
时间序列数据处理是数据分析中非常重要的一个领域,pandas提供了强大而全面的时间序列处理功能。本文将深入介绍pandas中的时间序列处理能力,帮助读者掌握这一核心技能。
时间序列基础概念
pandas时间序列功能基于NumPy的datetime64和timedelta64数据类型构建,整合了多种Python库的时间处理能力,并新增了大量实用功能。pandas主要处理四种时间相关概念:
- 日期时间(Datetimes) - 带时区支持的特定日期和时间,类似于Python标准库中的
datetime.datetime - 时间差(Timedeltas) - 绝对时间持续时间,类似于
datetime.timedelta - 时间段(Time spans) - 由时间点和关联频率定义的时间段
- 日期偏移(Date offsets) - 遵循日历算法的相对时间持续时间
时间序列核心功能
1. 时间解析与转换
pandas可以轻松解析各种格式的时间字符串:
import pandas as pd
import numpy as np
import datetime
# 多种时间格式解析
dti = pd.to_datetime(['1/1/2018', np.datetime64('2018-01-01'),
datetime.datetime(2018, 1, 1)])
2. 生成固定频率时间序列
# 生成3小时间隔的时间序列
dti = pd.date_range('2018-01-01', periods=3, freq='H')
3. 时区处理
# 本地化为UTC时区
dti = dti.tz_localize('UTC')
# 转换为太平洋时区
dti.tz_convert('US/Pacific')
4. 时间重采样
idx = pd.date_range('2018-01-01', periods=5, freq='H')
ts = pd.Series(range(len(idx)), index=idx)
# 2小时频率重采样求均值
ts.resample('2H').mean()
5. 日期时间运算
friday = pd.Timestamp('2018-01-05')
# 加1天
saturday = friday + pd.Timedelta('1 day')
# 加1个工作日(周五到周一)
monday = friday + pd.offsets.BDay()
时间戳与时间段的区别
pandas提供了两种主要的时间表示方式:
- 时间戳(Timestamp) - 表示特定时间点
- 时间段(Period) - 表示时间范围
# 时间戳示例
pd.Timestamp('2012-05-01')
# 时间段示例(默认频率为月)
pd.Period('2011-01')
时间转换技巧
1. 字符串转时间戳
pd.to_datetime(['2005/11/23', '2010.12.31'])
2. 处理欧洲日期格式
pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
3. 从DataFrame多列组合时间
df = pd.DataFrame({
'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]
})
pd.to_datetime(df)
4. 处理无效数据
# 忽略无效数据
pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
# 将无效数据转为NaT
pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
时间序列索引操作
时间序列索引(DatetimeIndex)提供了强大的功能:
rng = pd.date_range('2011-01-01', '2012-01-01', freq='BM')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
# 部分字符串索引
ts['2011-10']
时间序列限制
由于pandas使用纳秒精度表示时间戳,64位整数表示的时间范围大约为584年:
pd.Timestamp.min # 1677-09-21 00:12:43.145225
pd.Timestamp.max # 2262-04-11 23:47:16.854775807
最佳实践建议
- 尽量使用
to_datetime()函数而非直接使用Timestamp构造函数,因为它提供了更多解析选项 - 处理欧洲日期格式时要小心使用
dayfirst参数 - 对于大规模时间序列,指定
format参数可以显著提高解析速度 - 时间序列数据通常应该以时间作为索引
- 注意时间戳的精度限制,特别是处理历史或未来很远的数据时
通过掌握pandas的这些时间序列处理功能,您可以高效地处理各种时间相关的数据分析任务。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218