Pandas时间序列处理完全指南
2025-05-31 11:59:50作者:裴麒琰
时间序列数据处理是数据分析中非常重要的一个领域,pandas提供了强大而全面的时间序列处理功能。本文将深入介绍pandas中的时间序列处理能力,帮助读者掌握这一核心技能。
时间序列基础概念
pandas时间序列功能基于NumPy的datetime64和timedelta64数据类型构建,整合了多种Python库的时间处理能力,并新增了大量实用功能。pandas主要处理四种时间相关概念:
- 日期时间(Datetimes) - 带时区支持的特定日期和时间,类似于Python标准库中的
datetime.datetime - 时间差(Timedeltas) - 绝对时间持续时间,类似于
datetime.timedelta - 时间段(Time spans) - 由时间点和关联频率定义的时间段
- 日期偏移(Date offsets) - 遵循日历算法的相对时间持续时间
时间序列核心功能
1. 时间解析与转换
pandas可以轻松解析各种格式的时间字符串:
import pandas as pd
import numpy as np
import datetime
# 多种时间格式解析
dti = pd.to_datetime(['1/1/2018', np.datetime64('2018-01-01'),
datetime.datetime(2018, 1, 1)])
2. 生成固定频率时间序列
# 生成3小时间隔的时间序列
dti = pd.date_range('2018-01-01', periods=3, freq='H')
3. 时区处理
# 本地化为UTC时区
dti = dti.tz_localize('UTC')
# 转换为太平洋时区
dti.tz_convert('US/Pacific')
4. 时间重采样
idx = pd.date_range('2018-01-01', periods=5, freq='H')
ts = pd.Series(range(len(idx)), index=idx)
# 2小时频率重采样求均值
ts.resample('2H').mean()
5. 日期时间运算
friday = pd.Timestamp('2018-01-05')
# 加1天
saturday = friday + pd.Timedelta('1 day')
# 加1个工作日(周五到周一)
monday = friday + pd.offsets.BDay()
时间戳与时间段的区别
pandas提供了两种主要的时间表示方式:
- 时间戳(Timestamp) - 表示特定时间点
- 时间段(Period) - 表示时间范围
# 时间戳示例
pd.Timestamp('2012-05-01')
# 时间段示例(默认频率为月)
pd.Period('2011-01')
时间转换技巧
1. 字符串转时间戳
pd.to_datetime(['2005/11/23', '2010.12.31'])
2. 处理欧洲日期格式
pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
3. 从DataFrame多列组合时间
df = pd.DataFrame({
'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]
})
pd.to_datetime(df)
4. 处理无效数据
# 忽略无效数据
pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
# 将无效数据转为NaT
pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
时间序列索引操作
时间序列索引(DatetimeIndex)提供了强大的功能:
rng = pd.date_range('2011-01-01', '2012-01-01', freq='BM')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
# 部分字符串索引
ts['2011-10']
时间序列限制
由于pandas使用纳秒精度表示时间戳,64位整数表示的时间范围大约为584年:
pd.Timestamp.min # 1677-09-21 00:12:43.145225
pd.Timestamp.max # 2262-04-11 23:47:16.854775807
最佳实践建议
- 尽量使用
to_datetime()函数而非直接使用Timestamp构造函数,因为它提供了更多解析选项 - 处理欧洲日期格式时要小心使用
dayfirst参数 - 对于大规模时间序列,指定
format参数可以显著提高解析速度 - 时间序列数据通常应该以时间作为索引
- 注意时间戳的精度限制,特别是处理历史或未来很远的数据时
通过掌握pandas的这些时间序列处理功能,您可以高效地处理各种时间相关的数据分析任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
683
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
150
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
928
82