Pandas时间序列处理完全指南
2025-05-31 00:21:55作者:裴麒琰
时间序列数据处理是数据分析中非常重要的一个领域,pandas提供了强大而全面的时间序列处理功能。本文将深入介绍pandas中的时间序列处理能力,帮助读者掌握这一核心技能。
时间序列基础概念
pandas时间序列功能基于NumPy的datetime64和timedelta64数据类型构建,整合了多种Python库的时间处理能力,并新增了大量实用功能。pandas主要处理四种时间相关概念:
- 日期时间(Datetimes) - 带时区支持的特定日期和时间,类似于Python标准库中的
datetime.datetime - 时间差(Timedeltas) - 绝对时间持续时间,类似于
datetime.timedelta - 时间段(Time spans) - 由时间点和关联频率定义的时间段
- 日期偏移(Date offsets) - 遵循日历算法的相对时间持续时间
时间序列核心功能
1. 时间解析与转换
pandas可以轻松解析各种格式的时间字符串:
import pandas as pd
import numpy as np
import datetime
# 多种时间格式解析
dti = pd.to_datetime(['1/1/2018', np.datetime64('2018-01-01'),
datetime.datetime(2018, 1, 1)])
2. 生成固定频率时间序列
# 生成3小时间隔的时间序列
dti = pd.date_range('2018-01-01', periods=3, freq='H')
3. 时区处理
# 本地化为UTC时区
dti = dti.tz_localize('UTC')
# 转换为太平洋时区
dti.tz_convert('US/Pacific')
4. 时间重采样
idx = pd.date_range('2018-01-01', periods=5, freq='H')
ts = pd.Series(range(len(idx)), index=idx)
# 2小时频率重采样求均值
ts.resample('2H').mean()
5. 日期时间运算
friday = pd.Timestamp('2018-01-05')
# 加1天
saturday = friday + pd.Timedelta('1 day')
# 加1个工作日(周五到周一)
monday = friday + pd.offsets.BDay()
时间戳与时间段的区别
pandas提供了两种主要的时间表示方式:
- 时间戳(Timestamp) - 表示特定时间点
- 时间段(Period) - 表示时间范围
# 时间戳示例
pd.Timestamp('2012-05-01')
# 时间段示例(默认频率为月)
pd.Period('2011-01')
时间转换技巧
1. 字符串转时间戳
pd.to_datetime(['2005/11/23', '2010.12.31'])
2. 处理欧洲日期格式
pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
3. 从DataFrame多列组合时间
df = pd.DataFrame({
'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]
})
pd.to_datetime(df)
4. 处理无效数据
# 忽略无效数据
pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
# 将无效数据转为NaT
pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
时间序列索引操作
时间序列索引(DatetimeIndex)提供了强大的功能:
rng = pd.date_range('2011-01-01', '2012-01-01', freq='BM')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
# 部分字符串索引
ts['2011-10']
时间序列限制
由于pandas使用纳秒精度表示时间戳,64位整数表示的时间范围大约为584年:
pd.Timestamp.min # 1677-09-21 00:12:43.145225
pd.Timestamp.max # 2262-04-11 23:47:16.854775807
最佳实践建议
- 尽量使用
to_datetime()函数而非直接使用Timestamp构造函数,因为它提供了更多解析选项 - 处理欧洲日期格式时要小心使用
dayfirst参数 - 对于大规模时间序列,指定
format参数可以显著提高解析速度 - 时间序列数据通常应该以时间作为索引
- 注意时间戳的精度限制,特别是处理历史或未来很远的数据时
通过掌握pandas的这些时间序列处理功能,您可以高效地处理各种时间相关的数据分析任务。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1