Grafana Tempo 中 OTLP 接收端配置问题解析与解决方案
2025-06-13 05:38:58作者:晏闻田Solitary
问题背景
在分布式追踪系统的搭建过程中,Grafana Tempo 作为一款开源的分布式追踪后端,常与 OpenTelemetry 协议(OTLP)配合使用。然而在实际部署时,开发者经常会遇到 OTLP 接收端配置不当导致 404 错误的问题,特别是当尝试通过 HTTP 协议向 Tempo 发送追踪数据时。
核心问题分析
默认情况下,Grafana Tempo 2.7.0 版本中的 OTLP 接收器存在两个关键配置特性:
-
监听地址限制:从 Tempo 2.7.0 版本开始,OTLP 接收器默认只绑定到 localhost 接口,这意味着容器外部无法直接访问。
-
端点路径差异:Tempo 默认的 HTTP 接收路径为
/v1/traces,而许多开发者(特别是使用 Grafana Cloud 服务的用户)习惯性地认为路径应该是/otlp/v1/traces,这种认知差异会导致请求失败。
详细解决方案
1. 正确配置 OTLP 接收器
在 Tempo 的配置文件 config.yaml 中,需要对 OTLP 接收器进行明确配置:
distributor:
receivers:
otlp:
protocols:
grpc:
endpoint: "0.0.0.0:4317" # 明确指定监听所有接口
http:
endpoint: "0.0.0.0:4318" # 明确指定监听所有接口
traces_url_path: "/otlp/v1/traces" # 自定义追踪数据接收路径
关键配置说明:
endpoint必须明确设置为0.0.0.0才能允许容器外访问traces_url_path允许自定义接收路径,保持与云端服务的一致性
2. 客户端配置调整
在使用 Alloy 或其他 OpenTelemetry Collector 作为客户端时,需要确保导出器配置与 Tempo 接收端匹配:
otelcol.exporter.otlphttp "tempo" {
client {
endpoint = "http://tempo:4318/otlp" # 注意此处只包含基础路径
}
}
注意点:
- 端口必须与接收端配置一致(通常 4318 为 HTTP,4317 为 gRPC)
- 路径结构会自动拼接,只需提供基础路径
/otlp
配置原理深入
-
路径处理机制:
- OpenTelemetry Collector 的 OTLP HTTP 接收器默认使用
/v1/traces路径 - 通过
traces_url_path可以覆盖这一默认值 - 客户端配置的
endpoint基础路径会与固定后缀拼接形成完整路径
- OpenTelemetry Collector 的 OTLP HTTP 接收器默认使用
-
网络访问控制:
- 2.7.0 版本的安全改进默认限制了网络访问
- 生产环境中应考虑结合网络策略和认证机制,而非简单开放所有接口
-
协议选择建议:
- 对于性能敏感场景,推荐使用 gRPC 协议(端口 4317)
- HTTP 协议(端口 4318)更适合简单调试和兼容性场景
最佳实践建议
-
环境一致性:
- 开发环境应尽量模拟生产环境配置
- 路径前缀等配置应通过环境变量统一管理
-
版本兼容性检查:
- 升级 Tempo 版本时注意检查配置变更日志
- 特别是安全相关的默认值变更
-
健康检查机制:
- 配置完善的健康检查确保服务可用性
- 对 OTLP 接收端也应设置专门的健康检查
通过以上配置调整和原理理解,开发者可以顺利解决 Tempo 中 OTLP 接收端的 404 错误问题,并建立起更加健壮的追踪数据收集管道。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19