首页
/ 探索分布式追踪新境界:Grafana Tempo

探索分布式追踪新境界:Grafana Tempo

2024-08-07 19:19:30作者:秋阔奎Evelyn

Tempo Logo

Grafana Tempo 是一款强大的开源分布式追踪后端,以其易用性、高可扩展性和成本效益著称。这款工具只需借助对象存储即可运行,并且深度集成了 Grafana、Prometheus 和 Loki,为开发者提供了理想的监控和调试解决方案。

项目技术分析

Tempo 兼容 Jaeger、Zipkin、Kafka、OpenCensus 和 OpenTelemetry 等多种格式,能够以批量方式接收数据,进行缓冲处理后再将其写入 Azure、GCS、S3 或本地磁盘。这种设计确保了系统的健壮性、低成本以及易于运维的特性。此外,Tempo 实现了创新的 TraceQL 查询语言,它借鉴了 LogQL 和 PromQL 的优点,让用户可以精确地选择和筛选跨度,直接跳转到符合条件的跨度,极大地提高了工作效率。

项目应用场景

无论是在大型企业还是初创公司,Tempo 都能为各种规模的应用提供分布式追踪服务。它的应用场景包括但不限于:

  • 微服务架构中的问题排查
  • 性能优化,通过追踪数据洞察系统瓶颈
  • 新功能上线后的监控和故障隔离
  • 日志管理和日志关联分析

项目特点

  • 兼容性强:支持多种流行的追踪协议和数据格式。
  • 高效查询:TraceQL 提供了一种强大且直观的查询体验。
  • 弹性伸缩:设计为分布式的,能够轻松应对大规模部署。
  • 低成本:仅需对象存储,无需昂贵的专用硬件。
  • 深度集成:无缝整合 Grafana、Prometheus 和 Loki,提升整体监控效能。

快速入门

想要尝试 Tempo?你可以从 官方文档 开始,或者参考 Docker Compose、Helm、Jsonnet 示例 进行快速部署。

获取帮助

如果你在使用 Tempo 中遇到任何问题,可以通过以下途径寻求帮助:

关于 OpenTelemetry

Tempo 的接收层、线缆格式和存储格式都基于开放标准——OpenTelemetry,确保了与业界最佳实践的一致性。查看 集成指南 学习如何用 Tempo 配合 OpenTelemetry 进行应用的度量采集。

其他组件

除了核心的 Tempo 组件外,还有用于一致性检查的 tempo-vulture 工具,以及包含实用功能的 tempo-cli,详情可在对应链接中了解。

许可证

Grafana Tempo 使用 AGPL-3.0-only 许可证分发。有关 Apache-2.0 准则的例外情况,请参阅 LICENSING.md

让我们一起加入 Grafana Tempo 社区,开启分布式追踪的新旅程!

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0