OpenTelemetry Python SDK 中自定义维度和操作名称的日志记录实践
2025-07-06 09:05:36作者:江焘钦
背景介绍
在使用OpenTelemetry Python SDK进行应用监控时,开发者经常需要将自定义维度和操作名称添加到日志记录中。这些信息对于后续的日志分析和问题排查至关重要。本文将详细介绍如何在OpenTelemetry Python项目中实现这一功能。
核心概念
自定义维度
自定义维度是指开发者根据业务需求添加的额外日志属性,如应用名称、版本号等。这些维度可以帮助更好地分类和筛选日志数据。
操作名称
操作名称用于标识特定的业务操作或流程,通常作为日志记录的重要上下文信息出现。
实现方案
基础日志配置
首先需要配置基本的日志记录器,包括创建LoggerProvider和设置日志处理器:
from opentelemetry._logs import set_logger_provider
from opentelemetry.sdk._logs import LoggerProvider, LoggingHandler
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.sdk.resources import Resource
# 初始化日志提供者
logger_provider = LoggerProvider(
resource=Resource.create({
"service.name": "my-service",
"service.version": "1.0.0"
})
)
set_logger_provider(logger_provider)
# 添加日志处理器
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
添加自定义维度
OpenTelemetry提供了多种方式添加自定义维度:
- 通过日志记录直接添加:
logger.info("业务处理日志", extra={"key": "value"})
- 通过资源属性添加:
resource = Resource.create({
"app.name": "myapp",
"environment": "production"
})
设置操作名称
操作名称可以通过Span上下文来设置:
from opentelemetry import trace
from opentelemetry.trace import SpanKind
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span(
"process_order", # 操作名称
kind=SpanKind.SERVER
) as span:
# 设置操作参数
span.set_attribute("operation.params", "value")
logger.info("订单处理开始")
高级技巧
日志与追踪关联
为了实现日志与追踪的关联,可以使用以下方法:
from opentelemetry import context
from opentelemetry.sdk._logs import get_logger_provider
# 获取当前上下文
current_context = context.get_current()
# 创建日志记录器
logger_provider = get_logger_provider()
logger = logger_provider.get_logger(__name__)
# 记录带上下文的日志
logger.emit(log_record, context=current_context)
批量处理优化
对于高性能场景,建议使用批量日志处理器:
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter(
connection_string="your_connection_string"
)
processor = BatchLogRecordProcessor(exporter)
logger_provider.add_log_record_processor(processor)
常见问题解决
-
自定义维度不显示:
- 确保使用正确的属性键
- 检查日志导出器是否支持自定义属性
-
操作名称未生效:
- 确认Span是否已正确创建
- 验证上下文传播是否正常工作
-
性能问题:
- 调整批量处理器的参数
- 考虑使用异步日志记录
最佳实践
- 为关键业务操作定义清晰的操作名称
- 保持自定义维度的命名一致性
- 避免记录敏感信息
- 合理控制日志级别和数量
- 定期审查日志配置
通过本文介绍的方法,开发者可以灵活地在OpenTelemetry Python项目中实现自定义维度和操作名称的日志记录,为应用监控提供更丰富的信息。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137