Docusaurus项目中Rspack持久化缓存的探索与实践
在Docusaurus项目的开发过程中,我们一直在寻求提升构建性能的方法。近期,随着Rspack 1.2.0版本的发布,其新增的持久化缓存功能为我们带来了新的优化可能性。本文将深入探讨这一特性的实现原理、应用场景以及在Docusaurus项目中的实践过程。
持久化缓存的技术背景
持久化缓存是现代前端构建工具中的重要优化手段。与传统的临时内存缓存不同,持久化缓存能够将构建过程中的中间结果保存到磁盘中,在后续构建时直接复用这些结果,从而显著减少重复计算和编译的时间。
在Webpack生态中,持久化缓存已经是一个成熟的功能。而Rspack作为新兴的构建工具,在1.2.0版本中首次引入了这一特性的实验性支持。这对于使用Rspack作为构建引擎的Docusaurus项目来说,无疑是一个重要的性能优化机会。
实现方案的技术细节
在Docusaurus项目中启用Rspack持久化缓存,主要涉及两个关键修改点:
- 构建配置调整:需要修改基础Webpack配置,在Rspack环境下启用持久化缓存选项
- 缓存版本控制:需要为缓存设置合理的版本标识,确保不同环境(如开发/生产模式、多语言站点)使用独立的缓存空间
在实现过程中,我们发现Rspack的持久化缓存API与Webpack存在一些差异。例如,Rspack使用数组而非对象来定义构建依赖项(buildDependencies),并且通过单一version字段替代了Webpack中的name和version组合。这些差异虽然不大,但需要相应的适配工作。
实践中的挑战与解决方案
在实际应用中,我们遇到了一些技术挑战:
-
静态资源生成问题:启用持久化缓存后,通过loaderContext.emitFile生成的资源文件(如Markdown中的图片)有时无法正确创建。这是由于Rspack早期版本未将这些文件纳入缓存管理范围。
-
代码生成文件缓存:Docusaurus项目中自动生成的代码文件(位于.docusaurus目录)在缓存机制下表现不稳定,影响了构建的可靠性。
-
多环境缓存隔离:需要确保不同构建环境(如不同语言版本)使用独立的缓存空间,避免交叉污染。
针对这些问题,Rspack团队迅速响应,在1.2.3版本中修复了emitFile相关的问题,并通过后续版本持续优化缓存机制。对于代码生成文件的缓存问题,我们通过详细的基准测试和问题重现,与Rspack团队密切合作寻找解决方案。
性能优化效果
经过多次优化迭代,Rspack持久化缓存在Docusaurus项目中展现出了显著的性能提升:
- 重复构建时间大幅缩短
- 开发环境的热更新响应更快
- 大型项目的构建效率提升尤为明显
特别是在多语言站点的构建场景下,合理的缓存隔离策略使得各语言版本的构建过程能够充分利用缓存优势,同时保持构建结果的准确性。
未来展望
随着Rspack 1.3.6及后续版本的发布,持久化缓存的性能和稳定性得到了进一步改善。我们期待这一功能在Docusaurus项目中发挥更大的作用,为开发者带来更流畅的构建体验。
同时,我们也关注Rspack团队在远程缓存等高级特性上的进展,这些都将为大型项目的协作开发提供更多可能性。通过持续优化构建工具链,Docusaurus项目将继续为开发者提供高效、可靠的文档站点构建解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00