首页
/ ChunkLlama 项目使用教程

ChunkLlama 项目使用教程

2024-09-21 13:47:37作者:戚魁泉Nursing

1. 项目介绍

ChunkLlama 是一个用于扩展大型语言模型(LLMs)上下文窗口的训练免费方法。该项目由香港中文大学自然语言处理实验室(HKUNLP)开发,旨在通过一种称为双块注意力(Dual Chunk Attention, DCA)的技术,将 LLMs 的上下文窗口扩展到其原始预训练长度的 8 倍以上。DCA 方法无需额外的训练,可以无缝集成到现有的内存高效推理库中,如 FlashAttention 和 vLLM。

2. 项目快速启动

环境准备

首先,确保你已经安装了必要的依赖库。你可以通过以下命令安装所需的 Python 包:

pip install -r requirements.txt
pip install flash-attn --no-build-isolation

快速启动代码

以下是一个简单的示例代码,展示了如何使用 ChunkLlama 扩展 Llama2 模型的上下文窗口:

from transformers import AutoTokenizer, AutoModelForCausalLM
from chunkllama_attn_replace import replace_with_chunkllama

# 替换 Llama2 模型的注意力机制为 ChunkLlama
replace_with_chunkllama(pretraining_length=4096)

# 加载 Llama2 模型和分词器
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16)

# 输入文本
inputs = tokenizer("这是一个长文档的示例文本。", return_tensors="pt")

# 生成输出
output_ids = model.generate(**inputs, max_length=128)[0]
print(tokenizer.decode(output_ids))

3. 应用案例和最佳实践

案例1:长文档问答

ChunkLlama 可以用于处理包含大量信息的文档,例如 PDF 文件。以下是一个示例,展示了如何使用 ChunkLlama 与长文档进行交互:

# 加载 PDF 文件并进行分词
pdf_text = load_pdf_text("example.pdf")
inputs = tokenizer(pdf_text, return_tensors="pt")

# 生成问答
question = "文档中提到的主要观点是什么?"
inputs["input_ids"] = torch.cat([inputs["input_ids"], tokenizer(question, return_tensors="pt")["input_ids"]], dim=-1)
output_ids = model.generate(**inputs, max_length=256)[0]
print(tokenizer.decode(output_ids))

案例2:长对话历史处理

在聊天机器人应用中,ChunkLlama 可以用于处理长对话历史,确保模型能够记住并理解之前的对话内容:

# 模拟长对话历史
dialogue_history = ["用户:你好!", "助手:你好,有什么可以帮助你的吗?", "用户:我想了解关于 ChunkLlama 的信息。"]
inputs = tokenizer(" ".join(dialogue_history), return_tensors="pt")

# 生成回复
question = "ChunkLlama 是如何工作的?"
inputs["input_ids"] = torch.cat([inputs["input_ids"], tokenizer(question, return_tensors="pt")["input_ids"]], dim=-1)
output_ids = model.generate(**inputs, max_length=128)[0]
print(tokenizer.decode(output_ids))

4. 典型生态项目

项目1:FlashAttention

FlashAttention 是一个高效的注意力机制实现,与 ChunkLlama 结合使用可以显著提高长上下文推理的效率。

项目2:vLLM

vLLM 是一个用于大规模语言模型推理的库,支持 ChunkLlama 的集成,提供高效的内存管理和推理加速。

项目3:Llama2

Llama2 是一个开源的大型语言模型,ChunkLlama 可以无缝集成到 Llama2 中,扩展其上下文窗口,提升处理长文本的能力。

通过这些生态项目的支持,ChunkLlama 能够在实际应用中发挥更大的作用,满足各种复杂场景的需求。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5