首页
/ ChunkLlama 项目使用教程

ChunkLlama 项目使用教程

2024-09-21 13:47:37作者:戚魁泉Nursing

1. 项目介绍

ChunkLlama 是一个用于扩展大型语言模型(LLMs)上下文窗口的训练免费方法。该项目由香港中文大学自然语言处理实验室(HKUNLP)开发,旨在通过一种称为双块注意力(Dual Chunk Attention, DCA)的技术,将 LLMs 的上下文窗口扩展到其原始预训练长度的 8 倍以上。DCA 方法无需额外的训练,可以无缝集成到现有的内存高效推理库中,如 FlashAttention 和 vLLM。

2. 项目快速启动

环境准备

首先,确保你已经安装了必要的依赖库。你可以通过以下命令安装所需的 Python 包:

pip install -r requirements.txt
pip install flash-attn --no-build-isolation

快速启动代码

以下是一个简单的示例代码,展示了如何使用 ChunkLlama 扩展 Llama2 模型的上下文窗口:

from transformers import AutoTokenizer, AutoModelForCausalLM
from chunkllama_attn_replace import replace_with_chunkllama

# 替换 Llama2 模型的注意力机制为 ChunkLlama
replace_with_chunkllama(pretraining_length=4096)

# 加载 Llama2 模型和分词器
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16)

# 输入文本
inputs = tokenizer("这是一个长文档的示例文本。", return_tensors="pt")

# 生成输出
output_ids = model.generate(**inputs, max_length=128)[0]
print(tokenizer.decode(output_ids))

3. 应用案例和最佳实践

案例1:长文档问答

ChunkLlama 可以用于处理包含大量信息的文档,例如 PDF 文件。以下是一个示例,展示了如何使用 ChunkLlama 与长文档进行交互:

# 加载 PDF 文件并进行分词
pdf_text = load_pdf_text("example.pdf")
inputs = tokenizer(pdf_text, return_tensors="pt")

# 生成问答
question = "文档中提到的主要观点是什么?"
inputs["input_ids"] = torch.cat([inputs["input_ids"], tokenizer(question, return_tensors="pt")["input_ids"]], dim=-1)
output_ids = model.generate(**inputs, max_length=256)[0]
print(tokenizer.decode(output_ids))

案例2:长对话历史处理

在聊天机器人应用中,ChunkLlama 可以用于处理长对话历史,确保模型能够记住并理解之前的对话内容:

# 模拟长对话历史
dialogue_history = ["用户:你好!", "助手:你好,有什么可以帮助你的吗?", "用户:我想了解关于 ChunkLlama 的信息。"]
inputs = tokenizer(" ".join(dialogue_history), return_tensors="pt")

# 生成回复
question = "ChunkLlama 是如何工作的?"
inputs["input_ids"] = torch.cat([inputs["input_ids"], tokenizer(question, return_tensors="pt")["input_ids"]], dim=-1)
output_ids = model.generate(**inputs, max_length=128)[0]
print(tokenizer.decode(output_ids))

4. 典型生态项目

项目1:FlashAttention

FlashAttention 是一个高效的注意力机制实现,与 ChunkLlama 结合使用可以显著提高长上下文推理的效率。

项目2:vLLM

vLLM 是一个用于大规模语言模型推理的库,支持 ChunkLlama 的集成,提供高效的内存管理和推理加速。

项目3:Llama2

Llama2 是一个开源的大型语言模型,ChunkLlama 可以无缝集成到 Llama2 中,扩展其上下文窗口,提升处理长文本的能力。

通过这些生态项目的支持,ChunkLlama 能够在实际应用中发挥更大的作用,满足各种复杂场景的需求。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysqlxzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChatLangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admingin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vuesource-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madongmadong
基于Webman的权限管理系统
PHP
4
0
cool-admin-javacool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2