WordSimilarity 项目使用文档
2024-08-28 06:53:02作者:何将鹤
1. 项目的目录结构及介绍
WordSimilarity 项目的目录结构如下:
WordSimilarity/
├── README.md
├── requirements.txt
├── setup.py
├── word_similarity/
│ ├── __init__.py
│ ├── config.py
│ ├── main.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── similarity_model.py
│ ├── utils/
│ │ ├── __init__.py
│ │ ├── data_loader.py
│ │ ├── preprocessing.py
目录结构介绍
- README.md: 项目说明文件,包含项目的基本信息和使用说明。
- requirements.txt: 项目依赖文件,列出了运行项目所需的Python包。
- setup.py: 项目的安装脚本,用于安装项目及其依赖。
- word_similarity/: 项目的主要代码目录。
- init.py: 使
word_similarity目录成为一个Python包。 - config.py: 项目的配置文件,包含各种配置参数。
- main.py: 项目的启动文件,包含主程序入口。
- models/: 存放模型相关的代码。
- init.py: 使
models目录成为一个Python包。 - similarity_model.py: 定义了相似度计算的模型。
- init.py: 使
- utils/: 存放工具函数和辅助代码。
- init.py: 使
utils目录成为一个Python包。 - data_loader.py: 数据加载工具函数。
- preprocessing.py: 数据预处理工具函数。
- init.py: 使
- init.py: 使
2. 项目的启动文件介绍
项目的启动文件是 word_similarity/main.py。该文件包含了项目的主程序入口,主要功能如下:
- 加载配置文件。
- 初始化数据加载器和预处理工具。
- 初始化相似度计算模型。
- 提供命令行接口,接收用户输入的单词对,并计算其相似度。
启动文件代码示例
from word_similarity.config import Config
from word_similarity.models.similarity_model import SimilarityModel
from word_similarity.utils.data_loader import DataLoader
from word_similarity.utils.preprocessing import Preprocessor
def main():
config = Config()
data_loader = DataLoader(config)
preprocessor = Preprocessor(config)
model = SimilarityModel(config)
while True:
word1 = input("请输入第一个单词: ")
word2 = input("请输入第二个单词: ")
similarity = model.calculate_similarity(word1, word2)
print(f"单词 '{word1}' 和 '{word2}' 的相似度为: {similarity}")
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件是 word_similarity/config.py。该文件包含了项目的各种配置参数,如数据路径、模型参数等。
配置文件代码示例
class Config:
def __init__(self):
self.data_path = "data/word_data.csv"
self.embedding_size = 100
self.window_size = 5
self.min_count = 5
self.epochs = 10
配置参数介绍
- data_path: 数据文件的路径。
- embedding_size: 词向量的维度。
- window_size: 上下文窗口的大小。
- min_count: 最小词频,低于该词频的单词将被忽略。
- epochs: 训练迭代次数。
通过以上文档,您可以了解 WordSimilarity 项目的目录结构、启动文件和配置文件的基本信息,从而更好地使用和配置该项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869