首页
/ LLaMA-Factory项目中Qwen2.5-VL模型训练时的数据类型错误分析与解决方案

LLaMA-Factory项目中Qwen2.5-VL模型训练时的数据类型错误分析与解决方案

2025-05-02 09:50:09作者:凌朦慧Richard

在LLaMA-Factory项目中使用Qwen2.5-VL-7B-Instruct模型进行全参数微调训练时,开发者可能会遇到一个与数据类型相关的错误。这个错误的核心表现为模型在计算旋转位置编码时,输入张量和余弦/正弦参数的数据类型不匹配,具体错误信息显示"Input and cos/sin must have the same dtype, got torch.float32 and torch.bfloat16"。

该问题的技术背景在于Qwen2.5-VL模型的视觉编码器部分使用了Flash Attention的旋转位置编码实现。在计算过程中,模型期望输入张量和旋转位置编码参数保持相同的数据类型,但在实际运行中却出现了float32和bfloat16的混用情况。

经过技术分析,这个问题源于Hugging Face Transformers库中的一个实现缺陷。在Transformers的早期版本中,Qwen2.5-VL模型的视觉编码器没有正确处理混合精度训练时的数据类型转换。具体来说,当使用bfloat16精度进行训练时,视觉编码器的某些层未能正确保持数据类型一致性。

解决方案需要更新到包含修复补丁的Transformers版本。值得注意的是,虽然Transformers的v4.49.0正式版本尚未包含这个修复,但开发者可以通过直接从GitHub主分支安装来获取修复后的代码。这个修复主要确保视觉编码器在混合精度训练时能正确处理数据类型转换,保持计算过程中各张量的数据类型一致性。

对于遇到此问题的开发者,建议采取以下步骤解决:

  1. 卸载当前安装的Transformers版本
  2. 直接从GitHub安装最新主分支代码
  3. 重新启动训练过程

这个案例也提醒我们,在使用大型多模态模型进行训练时,需要特别注意不同组件间的数据类型兼容性,特别是在启用混合精度训练的情况下。视觉编码器和语言模型部分可能对数据类型有不同的要求和处理方式,这需要在模型实现层面进行仔细的统一和测试。

作为最佳实践,当使用LLaMA-Factory这类高级训练框架时,建议开发者:

  • 密切关注上游模型库的更新和问题修复
  • 在启用混合精度训练前,检查各组件的数据类型处理逻辑
  • 对于多模态模型,特别注意视觉和语言部分的接口兼容性
  • 在正式训练前进行小规模测试,验证数据类型转换的正确性
登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8