Pointcept项目中训练过程中出现NaN损失的分析与解决方案
2025-07-04 18:06:42作者:范靓好Udolf
引言
在使用Pointcept项目进行点云分割模型训练时,开发者可能会遇到训练过程中损失值突然变为NaN的情况。这种现象通常表明模型训练过程中出现了数值不稳定问题,需要及时诊断和解决。本文将深入分析这一问题的成因,并提供多种有效的解决方案。
问题现象分析
在Pointcept项目训练过程中,主要观察到两种异常现象:
- 损失值变为NaN:训练日志显示损失值突然变为NaN,并伴随"NaN or Inf found in input tensor"的警告信息
- CUDA设备端断言错误:随后出现"RuntimeError: CUDA error: device-side assert triggered"错误,导致训练中断
根本原因探究
经过深入分析,发现导致这一问题的原因主要有两个方面:
1. 梯度爆炸导致的数值不稳定
当模型参数更新幅度过大时,会导致梯度爆炸,进而使网络输出变为极大值或NaN。这种情况在以下场景更容易发生:
- 使用混合精度训练(AMP)时
- 学习率设置过高
- 点云数据规模差异大(从10k到150k点不等)
2. 数据预处理后的无效样本
在Sphere Crop等预处理操作后,可能出现以下情况:
- 裁剪后的点云只包含ignore_class类别
- 点云中包含大量噪声点
- 有效类别信息完全丢失
这种情况下计算损失函数时会产生NaN值。
解决方案
1. 梯度裁剪(Gradient Clipping)
在反向传播前对梯度进行裁剪是最直接的解决方案:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
这种方法能有效防止梯度爆炸,保持训练过程的数值稳定性。建议max_norm值设置在0.5-2.0之间。
2. 调整训练配置
- 禁用混合精度训练:设置
enable_amp=False - 降低学习率:适当减小初始学习率
- 使用PointBatchNorm:增强批归一化效果
3. 数据预处理优化
- 检查Sphere Crop结果:确保裁剪后仍包含有效类别
- 过滤无效样本:在数据加载阶段跳过只包含ignore_class的样本
- 噪声处理:对输入点云进行去噪预处理
最佳实践建议
- 梯度监控:定期打印梯度范数,及时发现潜在问题
- 损失函数保护:在计算损失前检查输入有效性
- 学习率调度:采用warmup策略逐步提高学习率
- 数据均衡:确保各样本点数量差异不过大
总结
Pointcept项目训练中出现NaN损失主要源于梯度爆炸和数据预处理问题。通过梯度裁剪、训练配置优化和数据质量控制三管齐下,可以有效解决这一问题。建议开发者在训练大规模点云数据时优先考虑这些方案,以确保模型训练的稳定性和收敛性。
对于社区贡献者而言,将这些解决方案集成到Pointcept项目中,将显著提升框架的鲁棒性和用户体验。特别是在处理真实场景中噪声多、规模差异大的点云数据时,这些改进尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120