Pointcept项目中训练过程中出现NaN损失的分析与解决方案
2025-07-04 18:06:42作者:范靓好Udolf
引言
在使用Pointcept项目进行点云分割模型训练时,开发者可能会遇到训练过程中损失值突然变为NaN的情况。这种现象通常表明模型训练过程中出现了数值不稳定问题,需要及时诊断和解决。本文将深入分析这一问题的成因,并提供多种有效的解决方案。
问题现象分析
在Pointcept项目训练过程中,主要观察到两种异常现象:
- 损失值变为NaN:训练日志显示损失值突然变为NaN,并伴随"NaN or Inf found in input tensor"的警告信息
- CUDA设备端断言错误:随后出现"RuntimeError: CUDA error: device-side assert triggered"错误,导致训练中断
根本原因探究
经过深入分析,发现导致这一问题的原因主要有两个方面:
1. 梯度爆炸导致的数值不稳定
当模型参数更新幅度过大时,会导致梯度爆炸,进而使网络输出变为极大值或NaN。这种情况在以下场景更容易发生:
- 使用混合精度训练(AMP)时
- 学习率设置过高
- 点云数据规模差异大(从10k到150k点不等)
2. 数据预处理后的无效样本
在Sphere Crop等预处理操作后,可能出现以下情况:
- 裁剪后的点云只包含ignore_class类别
- 点云中包含大量噪声点
- 有效类别信息完全丢失
这种情况下计算损失函数时会产生NaN值。
解决方案
1. 梯度裁剪(Gradient Clipping)
在反向传播前对梯度进行裁剪是最直接的解决方案:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
这种方法能有效防止梯度爆炸,保持训练过程的数值稳定性。建议max_norm值设置在0.5-2.0之间。
2. 调整训练配置
- 禁用混合精度训练:设置
enable_amp=False - 降低学习率:适当减小初始学习率
- 使用PointBatchNorm:增强批归一化效果
3. 数据预处理优化
- 检查Sphere Crop结果:确保裁剪后仍包含有效类别
- 过滤无效样本:在数据加载阶段跳过只包含ignore_class的样本
- 噪声处理:对输入点云进行去噪预处理
最佳实践建议
- 梯度监控:定期打印梯度范数,及时发现潜在问题
- 损失函数保护:在计算损失前检查输入有效性
- 学习率调度:采用warmup策略逐步提高学习率
- 数据均衡:确保各样本点数量差异不过大
总结
Pointcept项目训练中出现NaN损失主要源于梯度爆炸和数据预处理问题。通过梯度裁剪、训练配置优化和数据质量控制三管齐下,可以有效解决这一问题。建议开发者在训练大规模点云数据时优先考虑这些方案,以确保模型训练的稳定性和收敛性。
对于社区贡献者而言,将这些解决方案集成到Pointcept项目中,将显著提升框架的鲁棒性和用户体验。特别是在处理真实场景中噪声多、规模差异大的点云数据时,这些改进尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134