Triton推理服务器中ORT后端的GPU显存泄漏问题分析
2025-05-25 01:13:54作者:舒璇辛Bertina
问题概述
在Triton推理服务器使用ONNX Runtime(ORT)后端时,当以特定批处理大小序列发送推理请求时,会出现GPU显存持续泄漏的问题。这个问题在较新版本的Triton容器(nvcr.io/nvidia/tritonserver:24.12-py3和25.02-py3)中出现,但在较早版本(24.05-py3)中不存在。
问题表现
该问题表现为当以特定批处理大小序列(如[16,7,7,7...])发送请求时,每次推理后GPU显存都会增加约1024MB,最终导致显存耗尽和推理失败。而使用其他批处理大小序列(如[16,6,6,6...])则不会出现此问题。
技术背景
Triton推理服务器是一个高性能的机器学习模型服务系统,支持多种后端框架,包括ONNX Runtime。ORT后端允许用户在Triton中部署ONNX格式的模型。在模型推理过程中,Triton会管理GPU显存的分配和释放,确保高效利用硬件资源。
问题分析
触发条件
- 批处理大小序列:当最大批处理大小为16时,后续请求使用7-15之间的批处理大小会触发泄漏
- 模型结构:问题与模型中的特定操作(重采样器、CTC解码、数据类型转换)相关
- Triton版本:仅出现在24.12和25.02版本中,24.05版本正常
可能原因
- 内存池管理问题:ORT后端在特定批处理大小下可能没有正确释放临时分配的显存
- 批处理机制缺陷:Triton的批处理机制在处理非最大批处理大小时可能存在资源回收问题
- 版本兼容性问题:新版本Triton与ORT的交互方式可能引入了新的内存管理逻辑缺陷
解决方案与建议
临时解决方案
- 使用Triton 24.05版本容器
- 改用TensorRT后端(测试表明该后端无此问题)
- 避免使用会触发泄漏的批处理大小序列
长期解决方案
- 等待NVIDIA官方修复此问题
- 考虑在应用层实现批处理大小控制逻辑,避免触发条件
- 对模型进行优化,移除可能引发问题的操作(如重采样器或CTC解码)
技术验证方法
开发人员可以通过以下步骤验证问题:
- 准备一个包含重采样器和CTC解码的ONNX模型
- 配置Triton模型仓库,设置max_batch_size为16
- 使用Python客户端发送特定批处理大小序列的请求
- 监控nvidia-smi显示的显存使用情况
总结
Triton推理服务器在较新版本中出现的ORT后端显存泄漏问题,主要与特定批处理大小序列下的内存管理机制有关。虽然目前可以通过降级或更换后端来规避,但长期来看需要NVIDIA官方修复此问题。开发人员在生产环境中部署ONNX模型时,应充分进行压力测试和内存监控,确保系统稳定性。
对于性能敏感的应用场景,考虑使用TensorRT后端可能是一个更稳定的选择,但需要注意模型转换可能带来的精度损失问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134