Nussknacker 开源项目教程
2024-09-15 12:53:42作者:薛曦旖Francesca
1. 项目介绍
Nussknacker 是一个低代码的可视化工具,专为领域专家设计,用于构建、运行和监控实时决策算法,而无需编写代码。它基于 Apache Kafka 和 Apache Flink,支持高吞吐量(每秒处理多达 100 万事件),并集成了 AI/ML 模型推理功能。Nussknacker 通过拖放界面和预构建组件,使数据变得可操作,帮助用户快速部署实时行动解决方案。
2. 项目快速启动
快速启动步骤
-
下载并启动 Nussknacker
在终端中运行以下命令,快速启动 Nussknacker:
curl -o- https://raw.githubusercontent.com/TouK/nussknacker-quickstart/main/download-and-start.sh | bash
-
访问 Nussknacker 界面
启动完成后,打开浏览器访问
http://localhost:8080
,即可进入 Nussknacker 的可视化界面。
配置和运行
- 配置 Kafka 和 Flink:Nussknacker 默认使用 Kafka 和 Flink 作为数据处理引擎。确保你已经安装并配置好这些组件。
- 创建和部署场景:在 Nussknacker 界面中,通过拖放组件创建决策场景,完成后点击“部署”按钮即可运行。
3. 应用案例和最佳实践
应用案例
- 实时营销:通过 Nussknacker 实时分析客户行为,动态生成营销策略和优惠活动。
- 欺诈管理:在网络或设备信号上运行检测算法,实时识别和预防欺诈行为。
- 最佳行动建议:在销售点提供实时建议,帮助销售人员更好地服务客户。
- 物联网数据处理:自动化处理物联网设备数据,如预测性维护和库存管理。
最佳实践
- 数据流处理:利用 Kafka 和 Flink 的高吞吐量和低延迟特性,确保实时数据处理的高效性。
- 模型集成:通过 Nussknacker 集成 AI/ML 模型,实现复杂决策算法的自动化推理。
- 监控和调试:使用 Nussknacker 内置的监控工具,实时跟踪场景运行状态,快速定位和解决问题。
4. 典型生态项目
- nussknacker-quickstart:提供快速设置(docker-compose),展示 Nussknacker 的典型使用场景。
- nussknacker-sample-components:如果你打算创建自定义的 Nussknacker 组件,可以从这个项目开始。
- nussknacker-sample-helpers:展示如何添加自定义辅助函数(用户定义函数)。
- nussknacker-helm:Nussknacker 项目的 Helm 图表。
- nussknacker-flink-compatibility:提供向后兼容性工具,支持旧版本的 Flink。
- nussknacker-benchmarks:微基准和端到端基准测试的可视化工具。
通过这些生态项目,你可以更深入地了解和扩展 Nussknacker 的功能,满足不同场景的需求。
登录后查看全文
热门项目推荐
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
2025百大提名项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04
热门内容推荐
1 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp课程视频测验中的Tab键导航问题解析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

React Native鸿蒙化仓库
C++
144
229

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
718
462

openGauss kernel ~ openGauss is an open source relational database management system
C++
107
166

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
311
1.04 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
368
358

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
117
253

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.02 K
0

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
111
75

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
592
48

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
74
2