探索Atheris:Python世界的覆盖率引导型模糊测试神器
2024-05-22 01:48:26作者:瞿蔚英Wynne
Atheris是一个强大的,基于libFuzzer的Python模糊测试引擎,它不仅支持Python代码的模糊测试,还能对CPython的原生扩展进行测试。无论你是Python开发者还是安全专家,Atheris都是你寻找潜在漏洞和提升代码质量的理想工具。
安装与使用
Atheris支持Linux(32位和64位)以及Mac OS X,兼容Python版本从3.6到3.10。你可以通过简单的pip命令安装预编译的版本:
pip3 install atheris
如果要针对原生扩展进行测试,建议从源码构建以确保libFuzzer与你的Clang版本匹配。以下是源码安装的步骤:
# 构建最新发布版
pip3 install --no-binary atheris atheris
# 或者构建开发分支
git clone https://github.com/google/atheris.git
cd atheris
pip3 install .
对于Mac用户,由于Apple Clang不自带libFuzzer,你需要安装最新版本的LLVM。详细步骤见源码安装部分。
技术亮点
Atheris基于libFuzzer,这意味着它可以自动发现输入数据导致的新路径,并据此生成新的测试用例。对于Python部分,Atheris通过字节码级别的覆盖收集来判断代码执行情况。
应用场景
- 测试Python应用程序的核心逻辑,找出可能导致程序崩溃或行为异常的输入。
- 验证Python库或模块的安全性,特别关注那些处理外部输入的组件。
- 对于C扩展的Python模块,Atheris可以有效地发现潜在的内存安全问题。
使用示例
只需以下几步,你就可以开始使用Atheris进行模糊测试:
#!/usr/bin/python3
import atheris
with atheris.instrument_imports():
import some_library
import sys
def TestOneInput(data):
some_library.parse(data)
atheris.Setup(sys.argv, TestOneInput)
atheris.Fuzz()
当测试Python代码时,任何未捕获的异常都将被识别为失败。
特色功能
- 多维度覆盖:Atheris提供了多种覆盖率收集方式,包括对导入模块、单个函数甚至所有已加载函数的覆盖率跟踪。
- 扩展支持:能够对原生扩展进行模糊测试,但需要相应的 instrumentation。
- 结构感知模糊测试:支持自定义mutator和crossover函数,可以针对特定语法结构生成输入,提高测试效率。
- 可视化覆盖率报告:兼容coverage.py,方便查看哪些代码行被执行,有助于优化测试策略。
总的来说,Atheris提供了一个高效且灵活的框架,用于深入挖掘Python代码中的潜在问题,无论是纯Python代码还是带有原生扩展的部分。其简单易用的API和丰富的功能使其成为每个Python开发者和安全工程师的必备工具。现在就试试看,让Atheris助力你的代码变得更加健壮和安全!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355