首页
/ 探索Atheris:Python世界的覆盖率引导型模糊测试神器

探索Atheris:Python世界的覆盖率引导型模糊测试神器

2024-05-22 01:48:26作者:瞿蔚英Wynne

Atheris是一个强大的,基于libFuzzer的Python模糊测试引擎,它不仅支持Python代码的模糊测试,还能对CPython的原生扩展进行测试。无论你是Python开发者还是安全专家,Atheris都是你寻找潜在漏洞和提升代码质量的理想工具。

安装与使用

Atheris支持Linux(32位和64位)以及Mac OS X,兼容Python版本从3.6到3.10。你可以通过简单的pip命令安装预编译的版本:

pip3 install atheris

如果要针对原生扩展进行测试,建议从源码构建以确保libFuzzer与你的Clang版本匹配。以下是源码安装的步骤:

# 构建最新发布版
pip3 install --no-binary atheris atheris
# 或者构建开发分支
git clone https://github.com/google/atheris.git
cd atheris
pip3 install .

对于Mac用户,由于Apple Clang不自带libFuzzer,你需要安装最新版本的LLVM。详细步骤见源码安装部分。

技术亮点

Atheris基于libFuzzer,这意味着它可以自动发现输入数据导致的新路径,并据此生成新的测试用例。对于Python部分,Atheris通过字节码级别的覆盖收集来判断代码执行情况。

应用场景

  • 测试Python应用程序的核心逻辑,找出可能导致程序崩溃或行为异常的输入。
  • 验证Python库或模块的安全性,特别关注那些处理外部输入的组件。
  • 对于C扩展的Python模块,Atheris可以有效地发现潜在的内存安全问题。

使用示例

只需以下几步,你就可以开始使用Atheris进行模糊测试:

#!/usr/bin/python3

import atheris

with atheris.instrument_imports():
  import some_library
  import sys

def TestOneInput(data):
  some_library.parse(data)

atheris.Setup(sys.argv, TestOneInput)
atheris.Fuzz()

当测试Python代码时,任何未捕获的异常都将被识别为失败。

特色功能

  • 多维度覆盖:Atheris提供了多种覆盖率收集方式,包括对导入模块、单个函数甚至所有已加载函数的覆盖率跟踪。
  • 扩展支持:能够对原生扩展进行模糊测试,但需要相应的 instrumentation。
  • 结构感知模糊测试:支持自定义mutator和crossover函数,可以针对特定语法结构生成输入,提高测试效率。
  • 可视化覆盖率报告:兼容coverage.py,方便查看哪些代码行被执行,有助于优化测试策略。

总的来说,Atheris提供了一个高效且灵活的框架,用于深入挖掘Python代码中的潜在问题,无论是纯Python代码还是带有原生扩展的部分。其简单易用的API和丰富的功能使其成为每个Python开发者和安全工程师的必备工具。现在就试试看,让Atheris助力你的代码变得更加健壮和安全!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0