在昇腾NPU上运行Swift框架GRPO任务的技术要点解析
问题背景
在使用modelscope/swift框架进行GRPO任务时,许多开发者在昇腾NPU硬件环境下遇到了"Torch not compiled with CUDA enabled"的错误提示。这个问题源于框架中对硬件设备的硬编码处理,导致在非NVIDIA GPU环境下无法正常运行。
问题根源分析
通过技术分析,我们发现问题的核心在于swift/llm/infer/infer_engine/utils.py文件中的restore_torch_device_after_vllm_init函数。该函数原本设计用于在vllm初始化后恢复torch设备状态,但其中直接使用了torch.cuda进行设备操作,这种硬编码方式导致了在昇腾NPU环境下的兼容性问题。
解决方案
针对这一问题,技术团队提供了两种有效的解决方案:
-
代码修改方案: 将原函数中的torch.cuda调用替换为torch.npu调用,使其适配昇腾NPU架构。这种修改需要开发者具备一定的代码修改能力,但能从根本上解决问题。
-
环境配置方案:
- 升级PyTorch版本至2.4.0或更高
- 确保CANN工具包版本为8.1.RC1或兼容版本
- 使用适配的torch-npu版本(如2.5.1.dev20250228)
- 确认vllm_ascend版本为0.7.3rc1
技术要点详解
-
硬件适配层: 昇腾NPU使用不同于CUDA的硬件加速架构,需要专门的软件栈支持。CANN(Compute Architecture for Neural Networks)是华为推出的异构计算架构,为昇腾处理器提供底层支持。
-
PyTorch版本兼容性: 测试表明,PyTorch 2.1版本在昇腾环境下存在兼容性问题,而2.4.0及以上版本表现稳定。这提示我们在异构计算环境中,PyTorch版本选择至关重要。
-
框架适配策略: 现代深度学习框架需要考虑多硬件平台的兼容性设计。最佳实践是使用抽象设备接口而非直接调用特定硬件后端,如使用torch.device()而非直接调用torch.cuda或torch.npu。
实践建议
-
在昇腾环境中部署前,务必检查以下组件版本:
- PyTorch及torch-npu版本
- CANN工具包版本
- 框架适配层(vllm_ascend等)版本
-
对于框架开发者:
- 建议采用硬件抽象层设计
- 提供可配置的设备后端选项
- 在代码中增加硬件环境检测逻辑
-
对于终端用户:
- 优先尝试官方提供的环境配置方案
- 如需修改代码,建议通过继承和重写的方式进行,便于后续升级维护
总结
在异构计算时代,深度学习框架的多硬件适配能力变得尤为重要。本次问题的解决不仅提供了具体的技术方案,更揭示了深度学习框架在跨平台设计上的关键考量。随着国产AI芯片的快速发展,这类适配问题将会更加常见,掌握其解决思路对AI开发者而言至关重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00