首页
/ OpenPCDet项目中BEVFusion模型在NuScenes数据集评估时的数据处理问题解析

OpenPCDet项目中BEVFusion模型在NuScenes数据集评估时的数据处理问题解析

2025-06-10 15:10:27作者:何将鹤

问题背景

在使用OpenPCDet项目中的BEVFusion模型对NuScenes数据集进行评估时,开发者遇到了一个数据处理相关的错误。该错误发生在数据加载和批处理阶段,具体表现为在collate_batch函数中无法正确处理img_process_infos字段。

错误现象分析

当运行BEVFusion模型进行NuScenes数据集评估时,系统会抛出以下关键错误信息:

ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 2 dimensions. The detected shape was (6, 4) + inhomogeneous part.

错误发生在pcdet/datasets/dataset.py文件的collate_batch函数中,当尝试使用np.stack操作处理img_process_infos数据时失败。这是因为img_process_infos的数据结构较为复杂,包含不同类型和形状的数据,无法直接进行常规的堆叠操作。

问题根源

深入分析代码可以发现,在pcdet/datasets/nuscenes/nuscenes_dataset.py文件的第151行左右,代码将img_process_infos直接存储到了input_dict字典中:

input_dict['img_process_infos'] = img_process_infos
input_dict['camera_imgs'] = crop_images

然而,默认的collate_batch函数并没有针对这种复杂数据结构做特殊处理,导致在批处理阶段无法正确堆叠这些数据。

解决方案

针对这个问题,社区开发者提出了有效的解决方案。核心思路是为img_process_infos字段定义专门的数据类型描述,然后进行结构化处理。具体实现如下:

collate_batch函数中,在最后的else块之前添加以下处理逻辑:

elif key in ['img_process_infos']:
    dt = np.dtype([
        ('score', float),
        ('bbox', (int, 4)),
        ('flag', bool),
        ('class_id', int)
    ])
    structured_val = [np.array(sublist, dtype=dt) for sublist in val]
    ret[key] = np.stack(structured_val, axis=0)

这个解决方案的关键点在于:

  1. 明确定义了img_process_infos的数据结构,包括分数(score)、边界框(bbox)、标志(flag)和类别ID(class_id)等字段
  2. 使用NumPy的结构化数组来处理这种复杂数据类型
  3. 对每个子列表进行结构化转换后再进行堆叠操作

技术原理

这种解决方案利用了NumPy结构化数组的特性,能够处理包含不同类型数据的复杂结构。通过明确定义每个字段的数据类型和形状,NumPy可以正确解析和存储这些数据,从而避免了原始错误中提到的"inhomogeneous shape"问题。

实际应用效果

根据社区反馈,这个解决方案在实际应用中表现良好,成功解决了BEVFusion模型在NuScenes数据集评估时的数据处理问题。多位开发者验证了该方案的有效性。

总结

在深度学习项目中,特别是处理多模态数据(如BEVFusion同时处理点云和图像数据)时,经常会遇到复杂数据结构的处理问题。OpenPCDet项目中遇到的这个案例展示了如何通过合理定义数据结构和使用NumPy的高级特性来解决这类问题。这为处理类似的多模态数据批处理问题提供了有价值的参考。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
507
43
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
336
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70