Quivr项目中的LangGraph技术演进:从LCEL到更灵活的架构设计
2025-05-03 21:49:36作者:贡沫苏Truman
在开源项目Quivr的演进过程中,后端核心模块经历了一次重要的技术架构升级。本文将深入分析这次技术转型的背景、技术选型考量以及实现方案。
原有技术架构的局限性
Quivr最初采用了LangChain Expression Language(LCEL)作为其RAG(检索增强生成)管道的实现基础。LCEL作为LangChain生态的一部分,确实能够快速构建基于DAG(有向无环图)的工作流。然而在实际应用中,开发团队逐渐发现了几个关键问题:
- 拓扑结构限制:LCEL强制要求工作流必须是无环图,这在某些需要反馈机制或迭代处理的场景中显得不够灵活
- 调试困难:LCEL的链式语法虽然简洁,但在复杂业务逻辑下难以追踪中间状态和调试
- 可读性挑战:随着业务逻辑复杂化,LCEL的表达方式变得不够直观,增加了维护成本
技术转型方案评估
经过技术评估,团队选择了LangGraph作为替代方案。LangGraph作为LangChain生态中的新成员,提供了几个显著优势:
- 灵活的流程控制:支持任意拓扑结构,包括循环和条件分支,更适合复杂业务场景
- 直观的状态管理:采用显式的状态传递机制,调试时能够清晰追踪数据流
- 更好的可扩展性:模块化设计使得添加新功能或修改现有流程更加容易
实现细节与架构设计
在Quivr的具体实现中,核心RAG管道位于backend/core/quivr_core/quivr_rag.py文件中。转型过程中,团队需要重新设计以下几个方面:
- 节点定义:将原有的LCEL组件重构为独立的LangGraph节点
- 状态管理:设计合理的状态对象来承载整个工作流的数据传递
- 流程编排:利用LangGraph的图结构API重新编排业务逻辑
技术转型的价值与影响
这次架构升级为Quivr项目带来了多重收益:
- 业务逻辑表达能力增强:能够实现更复杂的RAG策略,如多轮检索、结果精炼等
- 开发效率提升:更直观的代码结构降低了新成员的理解成本
- 可维护性改善:清晰的模块边界和状态流转使得问题定位更加容易
经验总结与最佳实践
通过这次技术转型,Quivr团队积累了宝贵的经验:
- 渐进式迁移:建议先在小范围验证新架构,再逐步扩大替换范围
- 状态设计原则:保持状态对象的简洁性,避免过度设计
- 监控与测试:在架构变更后加强端到端测试和性能监控
这次技术演进不仅解决了Quivr项目的具体痛点,也为其他类似项目提供了有价值的参考案例,展示了如何根据项目发展阶段选择合适的技术架构。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217