推荐使用DiffIR:高效扩散模型实现图像修复
在计算机视觉领域中,图像修复是一项至关重要的任务,它要求在保留原有信息的同时恢复受损或模糊的图像。DiffIR(Efficient diffusion model for image restoration)是最近的一项技术创新,旨在提供一种高效且高质量的解决方案。这个开源项目源自ICCV 2023,并已引发广泛的关注。
1、项目介绍
DiffIR是一个创新的扩散模型,专为图像修复设计。它通过融合紧凑型IR先验提取网络(CPEN)、动态IR变换器(DIRformer)和去噪网络,实现了对传统扩散模型效率的重大提升。不同于常规的扩散模型需要大量迭代和大型模型来估计整个图像或特征图,DiffIR能够以更少的迭代次数获得准确的估算,同时生成更加稳定、真实的图像修复结果。
2、项目技术分析
DiffIR的预训练阶段,输入真实图像到CPEN_S1,学习得到一个紧凑的IR先验表示(IPR),用于指导DIRformer。在第二阶段,仅使用低质量图像进行训练,模型可以学到与预训练CPEN_S1相同的目标IRP。由于IRP仅为一紧凑向量,所以DiffIR能在较少迭代次数下工作,降低了计算成本。此外,它还采用CPEN_S2、DIRformer和去噪网络的联合优化,进一步减少了误差影响。
3、项目及技术应用场景
DiffIR不仅适用于基础的图像修复任务,如缺口填充(Inpainting),还扩展到了单图像超分辨率(GAN-based single-image super-resolution)和现实世界场景下的超分辨率(Real-world super-resolution),甚至包括运动模糊的消除(Motion deblurring)。这些应用证明了DiffIR在多种复杂场景下的适用性和卓越性能。
4、项目特点
- 高效:与传统扩散模型相比,DiffIR使用的迭代次数更少,运算更快。
- 精确:通过预训练和联合优化,能够精确地捕捉并恢复图像信息。
- 实用性:覆盖了多个图像处理任务,易于集成到现有的系统中。
- 强大:在多项实验中表现出优越的性能,同时消耗的计算资源更少。
为了便于用户使用,DiffIR提供了详细的安装、训练和评估指南,并附带了预训练模型。如果你正寻找一个强大的图像修复工具,或者对扩散模型有研究兴趣,那么DiffIR绝对值得你的关注!
@article{xia2023diffir,
title={Diffir: Efficient diffusion model for image restoration},
author={Xia, Bin and Zhang, Yulun and Wang, Shiyin and Wang, Yitong and Wu, Xinglong and Tian, Yapeng and Yang, Wenming and Van Gool, Luc},
journal={ICCV},
year={2023}
}
不要犹豫,立刻加入DiffIR的社区,开启你的高效图像修复之旅吧!如有任何疑问,请联系zjbinxia@gmail.com。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00