首页
/ 推荐使用DiffIR:高效扩散模型实现图像修复

推荐使用DiffIR:高效扩散模型实现图像修复

2024-05-24 08:42:00作者:傅爽业Veleda

在计算机视觉领域中,图像修复是一项至关重要的任务,它要求在保留原有信息的同时恢复受损或模糊的图像。DiffIR(Efficient diffusion model for image restoration)是最近的一项技术创新,旨在提供一种高效且高质量的解决方案。这个开源项目源自ICCV 2023,并已引发广泛的关注。

1、项目介绍

DiffIR是一个创新的扩散模型,专为图像修复设计。它通过融合紧凑型IR先验提取网络(CPEN)、动态IR变换器(DIRformer)和去噪网络,实现了对传统扩散模型效率的重大提升。不同于常规的扩散模型需要大量迭代和大型模型来估计整个图像或特征图,DiffIR能够以更少的迭代次数获得准确的估算,同时生成更加稳定、真实的图像修复结果。

2、项目技术分析

DiffIR的预训练阶段,输入真实图像到CPEN_S1,学习得到一个紧凑的IR先验表示(IPR),用于指导DIRformer。在第二阶段,仅使用低质量图像进行训练,模型可以学到与预训练CPEN_S1相同的目标IRP。由于IRP仅为一紧凑向量,所以DiffIR能在较少迭代次数下工作,降低了计算成本。此外,它还采用CPEN_S2、DIRformer和去噪网络的联合优化,进一步减少了误差影响。

3、项目及技术应用场景

DiffIR不仅适用于基础的图像修复任务,如缺口填充(Inpainting),还扩展到了单图像超分辨率(GAN-based single-image super-resolution)和现实世界场景下的超分辨率(Real-world super-resolution),甚至包括运动模糊的消除(Motion deblurring)。这些应用证明了DiffIR在多种复杂场景下的适用性和卓越性能。

4、项目特点

  • 高效:与传统扩散模型相比,DiffIR使用的迭代次数更少,运算更快。
  • 精确:通过预训练和联合优化,能够精确地捕捉并恢复图像信息。
  • 实用性:覆盖了多个图像处理任务,易于集成到现有的系统中。
  • 强大:在多项实验中表现出优越的性能,同时消耗的计算资源更少。

为了便于用户使用,DiffIR提供了详细的安装、训练和评估指南,并附带了预训练模型。如果你正寻找一个强大的图像修复工具,或者对扩散模型有研究兴趣,那么DiffIR绝对值得你的关注!

@article{xia2023diffir,
  title={Diffir: Efficient diffusion model for image restoration},
  author={Xia, Bin and Zhang, Yulun and Wang, Shiyin and Wang, Yitong and Wu, Xinglong and Tian, Yapeng and Yang, Wenming and Van Gool, Luc},
  journal={ICCV},
  year={2023}
}

不要犹豫,立刻加入DiffIR的社区,开启你的高效图像修复之旅吧!如有任何疑问,请联系zjbinxia@gmail.com。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5