AsyncDiff:异步去噪加速扩散模型,实现多设备并行处理
项目介绍
AsyncDiff 是一个创新的开源项目,旨在通过异步去噪技术加速扩散模型的推理过程。该项目由新加坡国立大学学习与视觉实验室(Learning and Vision Lab)的研究团队开发,核心成员包括 Zigeng Chen、Xinyin Ma、Gongfan Fang、Zhenxiong Tan 和 Xinchao Wang。AsyncDiff 通过将复杂的去噪模型分割成多个组件,并将每个组件分配到不同的设备上进行并行计算,从而显著减少了推理延迟,同时对生成质量的影响极小。
项目技术分析
AsyncDiff 的核心技术在于将传统的顺序去噪过程转变为异步处理。通过利用连续扩散步骤中隐藏状态之间的高度相似性,AsyncDiff 打破了组件之间的依赖链,使得每个组件可以在不同的设备上并行计算。具体来说,AsyncDiff 将去噪模型 εθ 分割成多个组件,并在预热阶段提前准备好每个组件的输入,从而实现并行处理。
项目支持多种扩散模型,包括 Stable Diffusion 3 Medium、Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、Stable Diffusion XL Inpainting、ControlNet、Stable Video Diffusion 和 AnimateDiff。
项目及技术应用场景
AsyncDiff 适用于需要高效处理大规模扩散模型推理的场景,特别是在以下领域:
- 图像生成与处理:加速 Stable Diffusion 系列模型的图像生成和处理,适用于图像编辑、超分辨率、图像修复等应用。
- 视频生成与处理:加速 Stable Video Diffusion 和 AnimateDiff 模型的视频生成和处理,适用于视频编辑、动画生成等应用。
- 多设备并行计算:适用于拥有多台 GPU 设备的计算集群或数据中心,通过并行计算提高推理效率。
项目特点
- 高效并行处理:通过异步去噪技术,实现多设备并行计算,显著减少推理延迟。
- 广泛兼容性:支持多种主流扩散模型,包括 Stable Diffusion、ControlNet、Stable Video Diffusion 等。
- 易于集成:只需添加两行代码即可为现有的扩散模型启用异步并行推理功能。
- 灵活配置:用户可以根据需求调整模型分割数量、去噪步长、预热步数等参数,以平衡速度和生成质量。
快速开始
安装
-
环境要求:
- NVIDIA GPU + CUDA >= 12.0 及相应的 CuDNN
-
创建环境:
conda create -n asyncdiff python=3.10 conda activate asyncdiff pip install -r requirements.txt
使用示例
以下是一个简单的使用示例,展示如何为 Stable Diffusion 模型启用异步并行推理:
import torch
from diffusers import StableDiffusionPipeline
from asyncdiff.async_sd import AsyncDiff
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
torch_dtype=torch.float16, use_safetensors=True, low_cpu_mem_usage=True)
async_diff = AsyncDiff(pipeline, model_n=2, stride=1, time_shift=False)
async_diff.reset_state(warm_up=1)
image = pipeline(<prompts>).images[0]
if dist.get_rank() == 0:
image.save(f"output.jpg")
加速推理
项目提供了详细的脚本,用于加速多种扩散模型的推理,包括 Stable Diffusion XL、Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion 3 Medium、ControlNet、Stable Diffusion x4 Upscaler、AnimateDiff 和 Stable Video Diffusion。
例如,加速 Stable Diffusion XL 的推理:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sdxl.py
结语
AsyncDiff 通过创新的异步去噪技术,为扩散模型的推理提供了高效的并行处理方案。无论是在图像生成、视频处理还是多设备并行计算领域,AsyncDiff 都能显著提升推理效率,同时保持生成质量。如果你正在寻找一种高效的方式来加速扩散模型的推理,AsyncDiff 绝对值得一试!
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04