首页
/ AsyncDiff:异步去噪加速扩散模型,实现多设备并行处理

AsyncDiff:异步去噪加速扩散模型,实现多设备并行处理

2024-09-24 02:16:29作者:温艾琴Wonderful

项目介绍

AsyncDiff 是一个创新的开源项目,旨在通过异步去噪技术加速扩散模型的推理过程。该项目由新加坡国立大学学习与视觉实验室(Learning and Vision Lab)的研究团队开发,核心成员包括 Zigeng ChenXinyin MaGongfan FangZhenxiong TanXinchao Wang。AsyncDiff 通过将复杂的去噪模型分割成多个组件,并将每个组件分配到不同的设备上进行并行计算,从而显著减少了推理延迟,同时对生成质量的影响极小。

项目技术分析

AsyncDiff 的核心技术在于将传统的顺序去噪过程转变为异步处理。通过利用连续扩散步骤中隐藏状态之间的高度相似性,AsyncDiff 打破了组件之间的依赖链,使得每个组件可以在不同的设备上并行计算。具体来说,AsyncDiff 将去噪模型 εθ 分割成多个组件,并在预热阶段提前准备好每个组件的输入,从而实现并行处理。

项目支持多种扩散模型,包括 Stable Diffusion 3 Medium、Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、Stable Diffusion XL Inpainting、ControlNet、Stable Video Diffusion 和 AnimateDiff。

项目及技术应用场景

AsyncDiff 适用于需要高效处理大规模扩散模型推理的场景,特别是在以下领域:

  • 图像生成与处理:加速 Stable Diffusion 系列模型的图像生成和处理,适用于图像编辑、超分辨率、图像修复等应用。
  • 视频生成与处理:加速 Stable Video Diffusion 和 AnimateDiff 模型的视频生成和处理,适用于视频编辑、动画生成等应用。
  • 多设备并行计算:适用于拥有多台 GPU 设备的计算集群或数据中心,通过并行计算提高推理效率。

项目特点

  • 高效并行处理:通过异步去噪技术,实现多设备并行计算,显著减少推理延迟。
  • 广泛兼容性:支持多种主流扩散模型,包括 Stable Diffusion、ControlNet、Stable Video Diffusion 等。
  • 易于集成:只需添加两行代码即可为现有的扩散模型启用异步并行推理功能。
  • 灵活配置:用户可以根据需求调整模型分割数量、去噪步长、预热步数等参数,以平衡速度和生成质量。

快速开始

安装

  1. 环境要求

    • NVIDIA GPU + CUDA >= 12.0 及相应的 CuDNN
  2. 创建环境

    conda create -n asyncdiff python=3.10
    conda activate asyncdiff
    pip install -r requirements.txt
    

使用示例

以下是一个简单的使用示例,展示如何为 Stable Diffusion 模型启用异步并行推理:

import torch
from diffusers import StableDiffusionPipeline
from asyncdiff.async_sd import AsyncDiff

pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", 
torch_dtype=torch.float16, use_safetensors=True, low_cpu_mem_usage=True)

async_diff = AsyncDiff(pipeline, model_n=2, stride=1, time_shift=False)

async_diff.reset_state(warm_up=1)
image = pipeline(<prompts>).images[0]
if dist.get_rank() == 0:
  image.save(f"output.jpg")

加速推理

项目提供了详细的脚本,用于加速多种扩散模型的推理,包括 Stable Diffusion XL、Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion 3 Medium、ControlNet、Stable Diffusion x4 Upscaler、AnimateDiff 和 Stable Video Diffusion。

例如,加速 Stable Diffusion XL 的推理:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sdxl.py

结语

AsyncDiff 通过创新的异步去噪技术,为扩散模型的推理提供了高效的并行处理方案。无论是在图像生成、视频处理还是多设备并行计算领域,AsyncDiff 都能显著提升推理效率,同时保持生成质量。如果你正在寻找一种高效的方式来加速扩散模型的推理,AsyncDiff 绝对值得一试!

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
132
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
70
63
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
379
389
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.24 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
915
548
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
144
189
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15