首页
/ AsyncDiff:异步去噪加速扩散模型,实现多设备并行处理

AsyncDiff:异步去噪加速扩散模型,实现多设备并行处理

2024-09-24 18:19:20作者:温艾琴Wonderful

项目介绍

AsyncDiff 是一个创新的开源项目,旨在通过异步去噪技术加速扩散模型的推理过程。该项目由新加坡国立大学学习与视觉实验室(Learning and Vision Lab)的研究团队开发,核心成员包括 Zigeng ChenXinyin MaGongfan FangZhenxiong TanXinchao Wang。AsyncDiff 通过将复杂的去噪模型分割成多个组件,并将每个组件分配到不同的设备上进行并行计算,从而显著减少了推理延迟,同时对生成质量的影响极小。

项目技术分析

AsyncDiff 的核心技术在于将传统的顺序去噪过程转变为异步处理。通过利用连续扩散步骤中隐藏状态之间的高度相似性,AsyncDiff 打破了组件之间的依赖链,使得每个组件可以在不同的设备上并行计算。具体来说,AsyncDiff 将去噪模型 εθ 分割成多个组件,并在预热阶段提前准备好每个组件的输入,从而实现并行处理。

项目支持多种扩散模型,包括 Stable Diffusion 3 Medium、Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、Stable Diffusion XL Inpainting、ControlNet、Stable Video Diffusion 和 AnimateDiff。

项目及技术应用场景

AsyncDiff 适用于需要高效处理大规模扩散模型推理的场景,特别是在以下领域:

  • 图像生成与处理:加速 Stable Diffusion 系列模型的图像生成和处理,适用于图像编辑、超分辨率、图像修复等应用。
  • 视频生成与处理:加速 Stable Video Diffusion 和 AnimateDiff 模型的视频生成和处理,适用于视频编辑、动画生成等应用。
  • 多设备并行计算:适用于拥有多台 GPU 设备的计算集群或数据中心,通过并行计算提高推理效率。

项目特点

  • 高效并行处理:通过异步去噪技术,实现多设备并行计算,显著减少推理延迟。
  • 广泛兼容性:支持多种主流扩散模型,包括 Stable Diffusion、ControlNet、Stable Video Diffusion 等。
  • 易于集成:只需添加两行代码即可为现有的扩散模型启用异步并行推理功能。
  • 灵活配置:用户可以根据需求调整模型分割数量、去噪步长、预热步数等参数,以平衡速度和生成质量。

快速开始

安装

  1. 环境要求

    • NVIDIA GPU + CUDA >= 12.0 及相应的 CuDNN
  2. 创建环境

    conda create -n asyncdiff python=3.10
    conda activate asyncdiff
    pip install -r requirements.txt
    

使用示例

以下是一个简单的使用示例,展示如何为 Stable Diffusion 模型启用异步并行推理:

import torch
from diffusers import StableDiffusionPipeline
from asyncdiff.async_sd import AsyncDiff

pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", 
torch_dtype=torch.float16, use_safetensors=True, low_cpu_mem_usage=True)

async_diff = AsyncDiff(pipeline, model_n=2, stride=1, time_shift=False)

async_diff.reset_state(warm_up=1)
image = pipeline(<prompts>).images[0]
if dist.get_rank() == 0:
  image.save(f"output.jpg")

加速推理

项目提供了详细的脚本,用于加速多种扩散模型的推理,包括 Stable Diffusion XL、Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion 3 Medium、ControlNet、Stable Diffusion x4 Upscaler、AnimateDiff 和 Stable Video Diffusion。

例如,加速 Stable Diffusion XL 的推理:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run --nproc_per_node=4 --run-path examples/run_sdxl.py

结语

AsyncDiff 通过创新的异步去噪技术,为扩散模型的推理提供了高效的并行处理方案。无论是在图像生成、视频处理还是多设备并行计算领域,AsyncDiff 都能显著提升推理效率,同时保持生成质量。如果你正在寻找一种高效的方式来加速扩散模型的推理,AsyncDiff 绝对值得一试!

项目优选

收起
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
34
9
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2