在MTEB基准测试中使用自定义模型的技术实践
2025-07-01 00:15:34作者:董宙帆
背景介绍
MTEB(Massive Text Embedding Benchmark)是一个用于评估文本嵌入模型性能的基准测试框架。它支持多种任务类型,包括分类、聚类、检索等。虽然MTEB默认支持SentenceTransformer模型,但开发者也可以集成自定义模型进行评估。
自定义模型集成方法
要在MTEB中使用自定义模型,需要创建一个实现特定接口的类。核心要求是实现encode方法,该方法接收句子列表并返回对应的嵌入向量。
基础实现方案
最基本的实现方式如下:
import numpy as np
import mteb
class CustomModel:
def encode(self, sentences: list[str], **kwargs) -> np.ndarray:
# 返回随机向量作为示例
return np.random.rand(len(sentences), 768)
实际应用中的完整实现
在实际应用中,通常会集成Hugging Face的预训练模型:
from transformers import AutoModel, AutoTokenizer
import numpy as np
from typing import List
class CustomModel:
def __init__(self, model_path: str = "./gte-base-en-v1.5"):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
def encode(self, sentences: List[str], **kwargs) -> np.ndarray:
batch_dict = self.tokenizer(sentences, padding=True, return_tensors='pt')
outputs = self.model(**batch_dict)
return outputs.last_hidden_state[:, 0].detach().numpy()
常见问题与解决方案
评估结果未生成问题
当遇到评估结果未生成的情况时,可以尝试以下解决方案:
- 检查MTEB版本:确保使用1.38.21或更高版本
- 强制重新运行评估:使用
overwrite_results=True参数 - 验证模型输出:确保encode方法返回正确的numpy数组格式
性能优化建议
- 避免重复加载模型:在__init__中加载模型,而不是每次encode时加载
- 批量处理:合理设置batch_size参数
- 硬件加速:利用GPU进行推理加速
高级配置选项
MTEB提供了多种配置选项来定制评估过程:
- 任务选择:可以指定特定任务进行评估
- 元数据配置:为模型添加描述信息
- 评估参数:控制评估的详细程度和方式
总结
通过实现自定义模型接口,开发者可以灵活地将各种文本嵌入模型集成到MTEB基准测试框架中。这一过程不仅需要正确实现技术接口,还需要注意性能优化和版本兼容性等问题。掌握这些技术要点后,开发者可以更全面地评估和比较不同嵌入模型的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100