MTEB项目1.38.28版本发布:多语言文本嵌入基准测试工具更新
项目简介
MTEB(Massive Text Embedding Benchmark)是一个用于评估文本嵌入模型性能的开源基准测试框架。它为研究人员和开发者提供了一个标准化的评估平台,可以全面测试各种文本嵌入模型在不同任务上的表现。该项目支持多种语言和多种任务类型,包括检索、分类、聚类等,是自然语言处理领域的重要工具。
1.38.28版本更新内容
数据集增强
本次版本更新中,MTEB增加了多个重要的数据集和基准测试:
-
R2MED检索基准测试:这是一个全新的医学领域检索数据集,专门用于评估模型在医学信息检索任务中的表现。该数据集经过多位专家的严格审核,确保数据质量和专业性。
-
MIRACL视觉数据集:扩展了MTEB的多模态能力,这个数据集结合了文本和视觉信息,为评估跨模态嵌入模型提供了新的可能性。数据集支持多种语言,增强了国际适用性。
模型支持扩展
-
GeoGPT-Research-Project/GeoEmbedding模型:新增了对地理空间领域专用嵌入模型的支持。该模型经过专门训练,能够更好地处理与地理位置相关的文本信息。
-
Qwen3嵌入模型:加入了最新一代的Qwen系列模型支持,为中文NLP任务提供了更强大的嵌入能力。
-
XYZ-embedding模型:新增支持这一通用文本嵌入模型,扩展了框架的模型选择范围。
技术改进与修复
-
CMedQA检索任务适配:修复了该医学问答检索任务的适配问题,确保了评估的准确性和一致性。
-
配置错误修复:解决了语义发布配置中的问题,提高了版本发布的可靠性。
-
表单处理优化:移除了不再有效的表单处理方式,提升了代码的健壮性。
技术意义与应用价值
本次更新进一步巩固了MTEB作为文本嵌入评估标准框架的地位。新增的医学领域专用数据集和模型支持,使得MTEB能够更好地服务于医疗健康领域的NLP应用。而多模态数据集的加入,则标志着MTEB开始向更广泛的AI评估领域扩展。
对于研究人员而言,这些更新意味着:
- 更全面的评估能力,特别是在专业领域
- 更多样化的模型选择
- 更可靠的测试结果
- 更丰富的跨模态评估可能性
对于开发者来说,新版本提供了:
- 更简便的模型集成方式
- 更稳定的运行环境
- 更广泛的适用场景
总结
MTEB 1.38.28版本的发布,体现了该项目持续推动文本嵌入技术发展的承诺。通过不断扩展数据集、增加模型支持和完善技术细节,MTEB为NLP社区提供了越来越强大的评估工具。这些改进不仅有助于推动学术研究,也将促进工业界更有效地开发和部署文本嵌入技术。
对于任何从事文本嵌入相关工作的人员来说,及时升级到最新版本,充分利用这些新功能和改进,将有助于获得更准确、更全面的模型评估结果。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00