MTEB项目1.38.28版本发布:多语言文本嵌入基准测试工具更新
项目简介
MTEB(Massive Text Embedding Benchmark)是一个用于评估文本嵌入模型性能的开源基准测试框架。它为研究人员和开发者提供了一个标准化的评估平台,可以全面测试各种文本嵌入模型在不同任务上的表现。该项目支持多种语言和多种任务类型,包括检索、分类、聚类等,是自然语言处理领域的重要工具。
1.38.28版本更新内容
数据集增强
本次版本更新中,MTEB增加了多个重要的数据集和基准测试:
-
R2MED检索基准测试:这是一个全新的医学领域检索数据集,专门用于评估模型在医学信息检索任务中的表现。该数据集经过多位专家的严格审核,确保数据质量和专业性。
-
MIRACL视觉数据集:扩展了MTEB的多模态能力,这个数据集结合了文本和视觉信息,为评估跨模态嵌入模型提供了新的可能性。数据集支持多种语言,增强了国际适用性。
模型支持扩展
-
GeoGPT-Research-Project/GeoEmbedding模型:新增了对地理空间领域专用嵌入模型的支持。该模型经过专门训练,能够更好地处理与地理位置相关的文本信息。
-
Qwen3嵌入模型:加入了最新一代的Qwen系列模型支持,为中文NLP任务提供了更强大的嵌入能力。
-
XYZ-embedding模型:新增支持这一通用文本嵌入模型,扩展了框架的模型选择范围。
技术改进与修复
-
CMedQA检索任务适配:修复了该医学问答检索任务的适配问题,确保了评估的准确性和一致性。
-
配置错误修复:解决了语义发布配置中的问题,提高了版本发布的可靠性。
-
表单处理优化:移除了不再有效的表单处理方式,提升了代码的健壮性。
技术意义与应用价值
本次更新进一步巩固了MTEB作为文本嵌入评估标准框架的地位。新增的医学领域专用数据集和模型支持,使得MTEB能够更好地服务于医疗健康领域的NLP应用。而多模态数据集的加入,则标志着MTEB开始向更广泛的AI评估领域扩展。
对于研究人员而言,这些更新意味着:
- 更全面的评估能力,特别是在专业领域
- 更多样化的模型选择
- 更可靠的测试结果
- 更丰富的跨模态评估可能性
对于开发者来说,新版本提供了:
- 更简便的模型集成方式
- 更稳定的运行环境
- 更广泛的适用场景
总结
MTEB 1.38.28版本的发布,体现了该项目持续推动文本嵌入技术发展的承诺。通过不断扩展数据集、增加模型支持和完善技术细节,MTEB为NLP社区提供了越来越强大的评估工具。这些改进不仅有助于推动学术研究,也将促进工业界更有效地开发和部署文本嵌入技术。
对于任何从事文本嵌入相关工作的人员来说,及时升级到最新版本,充分利用这些新功能和改进,将有助于获得更准确、更全面的模型评估结果。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00