深入理解LLM函数:以gregreindel/llm-exe项目为例
2025-06-19 07:52:05作者:晏闻田Solitary
什么是LLM函数?
LLM函数(Large Language Model Function)是一种利用大型语言模型(LLM)能力来实现传统编程功能的创新方法。随着LLM技术的快速发展,开发者现在可以考虑用简单的LLM调用来替代应用程序中复杂的传统功能实现。
传统实现 vs LLM函数实现
让我们以检测敏感信息的功能为例,比较两种实现方式的差异:
传统实现方式
function checkIfDocumentContainsSensitiveInfo(input){
// 需要编写大量正则表达式来匹配各种敏感信息模式
// 例如联系方式、证件号码、支付信息等
// 每种信息都需要单独的正则表达式
// 代码会变得冗长且难以维护
}
传统方法的主要问题:
- 需要编写大量复杂的正则表达式
- 对新出现的敏感信息模式适应性差
- 维护成本高,需要不断更新规则
- 难以覆盖所有边界情况
LLM函数实现方式
function checkIfDocumentContainsSensitiveInfoWithLlm(input){
// 直接询问LLM内容是否包含敏感信息
// 利用LLM的自然语言理解能力
}
LLM函数的优势:
- 代码简洁,无需编写复杂规则
- 利用LLM的语义理解能力,识别更准确
- 适应性强,能处理各种变体的信息
- 维护简单,只需调整提示词
实际应用示例
在gregreindel/llm-exe项目中,我们可以这样实现一个敏感信息检测器:
import {
useLlm,
createChatPrompt,
createParser,
createLlmExecutor,
} from "llm-exe";
export function sensitiveInfoDetector(input: string) {
const instruction = `你需要检查以下文本是否包含下列敏感信息:
## 需要检测的信息类型:
联系方式:任何符合联系方式格式的内容
证件号码:个人证件号码或企业识别号
支付信息:支付卡号码
## 请按以下模板响应:
联系方式:<true或false,表示是否包含此类信息>
证件号码:<true或false,表示是否包含此类信息>
支付信息:<true或false,表示是否包含此类信息>`;
const llm = useLlm("openai.gpt-4o-mini");
const prompt = createChatPrompt(instruction).addUserMessage(input);
const parser = createParser("listToJson");
const executor = createLlmExecutor({
llm,
prompt,
parser,
});
return executor.execute({ input });
}
使用示例
const input = "你好!可以帮我结账吗?我的支付卡号是4242-4242-4242-4242!!"
const response = await sensitiveInfoDetector({ input })
/**
* 输出结果:
* {
* contactInfo: false,
* idNumber: false,
* paymentInfo: true
* }
*/
LLM函数的核心组件
- LLM实例:通过
useLlm选择使用的语言模型 - 提示词工程:使用
createChatPrompt构建清晰的指令 - 解析器:通过
createParser将LLM输出转换为结构化数据 - 执行器:
createLlmExecutor负责协调整个执行流程
类型安全优势
gregreindel/llm-exe项目的一个显著特点是提供了强类型支持。sensitiveInfoDetector函数的输入和输出都有明确的类型定义,这使得:
- 集成到现有代码库更安全
- 开发时能获得更好的IDE支持
- 减少运行时错误
- 提高代码可维护性
适用场景
LLM函数特别适合以下场景:
- 自然语言处理任务(如情感分析、实体识别)
- 需要灵活规则的系统(如内容审核)
- 处理非结构化数据的场景
- 需要快速原型开发的场景
性能考量
虽然LLM函数提供了诸多优势,但也需要考虑:
- 响应时间可能比传统函数长
- 需要管理API调用成本
- 可能需要处理速率限制
- 需要考虑模型的知识截止日期
总结
LLM函数代表了软件开发的一种新范式,它通过利用大型语言模型的强大能力,让开发者能够用更简洁的代码实现复杂功能。gregreindel/llm-exe项目提供了一套完善的工具链,使得创建、管理和执行LLM函数变得更加简单和类型安全。
随着LLM技术的不断进步,我们可以预见LLM函数将在更多领域替代传统实现方式,特别是在需要处理自然语言和复杂逻辑的场景中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140