EvoTorch:开源进化计算库,助力高效优化与学习
2024-09-08 09:00:22作者:廉彬冶Miranda
项目介绍
EvoTorch 是一个由 NNAISENSE 开发的开源进化计算库,基于强大的 PyTorch 框架构建。EvoTorch 旨在为各种优化问题提供高效的解决方案,无论是可微分问题(如梯度下降)还是非可微分问题。通过丰富的算法库和强大的并行计算能力,EvoTorch 能够显著加速优化过程,适用于从黑箱优化到强化学习和监督学习的多种任务。
项目技术分析
EvoTorch 的核心优势在于其基于 PyTorch 的实现,充分利用了 PyTorch 的向量化和并行化能力,特别是在 GPU 上的加速效果显著。此外,EvoTorch 集成了多种进化计算算法,包括分布式搜索算法(如 PGPE、XNES、CMA-ES、SNES、CEM)和群体搜索算法(如 GeneticAlgorithm、CoSyNE、MAPElites)。通过与 Ray 的集成,EvoTorch 能够进一步扩展其计算能力,支持跨多 CPU、多 GPU 以及多计算机集群的分布式计算。
项目及技术应用场景
EvoTorch 的应用场景非常广泛,主要包括:
- 黑箱优化问题:适用于连续或离散的优化问题,无需目标函数的梯度信息。
- 强化学习任务:通过进化算法优化策略网络,适用于各种强化学习环境。
- 监督学习任务:利用进化算法优化模型参数,适用于各种监督学习任务。
项目特点
- 强大的算法库:EvoTorch 提供了多种进化计算算法,涵盖了从分布式搜索到群体搜索的广泛领域。
- 高效的并行计算:基于 PyTorch 和 Ray,EvoTorch 能够充分利用 GPU 和分布式计算资源,显著提升优化效率。
- 灵活的接口:EvoTorch 提供了简洁易用的 API,支持自定义目标函数和优化任务。
- 丰富的文档和社区支持:EvoTorch 提供了详细的文档和Slack 社区,方便用户学习和交流。
快速开始
通过以下命令即可安装 EvoTorch:
pip install evotorch
以下是一个简单的黑箱优化示例,展示了如何使用 EvoTorch 解决经典的 Rastrigin 问题:
from evotorch import Problem
from evotorch.algorithms import SNES
from evotorch.logging import StdOutLogger, PandasLogger
import math
import matplotlib.pyplot as plt
import torch
# 定义目标函数
def rastrigin(x: torch.Tensor) -> torch.Tensor:
A = 10
(_, n) = x.shape
return A * n + torch.sum((x**2) - A * torch.cos(2 * math.pi * x), 1)
# 定义问题
problem = Problem(
"min",
rastrigin,
initial_bounds=(-5.12, 5.12),
solution_length=100,
vectorized=True,
# device="cuda:0" # 启用此行以使用 GPU
)
# 初始化 SNES 算法
searcher = SNES(problem, popsize=1000, stdev_init=10.0)
# 初始化标准输出日志和 Pandas 日志
_ = StdOutLogger(searcher, interval=10)
pandas_logger = PandasLogger(searcher)
# 运行 SNES 算法
searcher.run(2000)
# 获取进化过程数据并绘图
pandas_frame = pandas_logger.to_dataframe()
pandas_frame["best_eval"].plot()
plt.show()
引用
如果您在研究中使用了 EvoTorch,请考虑引用我们的论文:
@article{evotorch2023arxiv,
title={{EvoTorch}: Scalable Evolutionary Computation in {Python}},
author={Toklu, Nihat Engin and Atkinson, Timothy and Micka, Vojt\v{e}ch and Liskowski, Pawe\l{} and Srivastava, Rupesh Kumar},
journal={arXiv preprint},
year={2023},
note={https://arxiv.org/abs/2302.12600}
}
贡献
欢迎贡献代码和提出建议!请参考我们的贡献指南。
作者
EvoTorch 是一个强大且灵活的进化计算库,无论您是研究者还是开发者,都能从中受益。立即加入我们,探索进化计算的无限可能!
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
Ascend Extension for PyTorch
Python
131
159
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
221
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.5 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
156
206