EvoTorch:开源进化计算库,助力高效优化与学习
2024-09-08 02:02:16作者:廉彬冶Miranda
项目介绍
EvoTorch 是一个由 NNAISENSE 开发的开源进化计算库,基于强大的 PyTorch 框架构建。EvoTorch 旨在为各种优化问题提供高效的解决方案,无论是可微分问题(如梯度下降)还是非可微分问题。通过丰富的算法库和强大的并行计算能力,EvoTorch 能够显著加速优化过程,适用于从黑箱优化到强化学习和监督学习的多种任务。
项目技术分析
EvoTorch 的核心优势在于其基于 PyTorch 的实现,充分利用了 PyTorch 的向量化和并行化能力,特别是在 GPU 上的加速效果显著。此外,EvoTorch 集成了多种进化计算算法,包括分布式搜索算法(如 PGPE、XNES、CMA-ES、SNES、CEM)和群体搜索算法(如 GeneticAlgorithm、CoSyNE、MAPElites)。通过与 Ray 的集成,EvoTorch 能够进一步扩展其计算能力,支持跨多 CPU、多 GPU 以及多计算机集群的分布式计算。
项目及技术应用场景
EvoTorch 的应用场景非常广泛,主要包括:
- 黑箱优化问题:适用于连续或离散的优化问题,无需目标函数的梯度信息。
- 强化学习任务:通过进化算法优化策略网络,适用于各种强化学习环境。
- 监督学习任务:利用进化算法优化模型参数,适用于各种监督学习任务。
项目特点
- 强大的算法库:EvoTorch 提供了多种进化计算算法,涵盖了从分布式搜索到群体搜索的广泛领域。
- 高效的并行计算:基于 PyTorch 和 Ray,EvoTorch 能够充分利用 GPU 和分布式计算资源,显著提升优化效率。
- 灵活的接口:EvoTorch 提供了简洁易用的 API,支持自定义目标函数和优化任务。
- 丰富的文档和社区支持:EvoTorch 提供了详细的文档和Slack 社区,方便用户学习和交流。
快速开始
通过以下命令即可安装 EvoTorch:
pip install evotorch
以下是一个简单的黑箱优化示例,展示了如何使用 EvoTorch 解决经典的 Rastrigin 问题:
from evotorch import Problem
from evotorch.algorithms import SNES
from evotorch.logging import StdOutLogger, PandasLogger
import math
import matplotlib.pyplot as plt
import torch
# 定义目标函数
def rastrigin(x: torch.Tensor) -> torch.Tensor:
A = 10
(_, n) = x.shape
return A * n + torch.sum((x**2) - A * torch.cos(2 * math.pi * x), 1)
# 定义问题
problem = Problem(
"min",
rastrigin,
initial_bounds=(-5.12, 5.12),
solution_length=100,
vectorized=True,
# device="cuda:0" # 启用此行以使用 GPU
)
# 初始化 SNES 算法
searcher = SNES(problem, popsize=1000, stdev_init=10.0)
# 初始化标准输出日志和 Pandas 日志
_ = StdOutLogger(searcher, interval=10)
pandas_logger = PandasLogger(searcher)
# 运行 SNES 算法
searcher.run(2000)
# 获取进化过程数据并绘图
pandas_frame = pandas_logger.to_dataframe()
pandas_frame["best_eval"].plot()
plt.show()
引用
如果您在研究中使用了 EvoTorch,请考虑引用我们的论文:
@article{evotorch2023arxiv,
title={{EvoTorch}: Scalable Evolutionary Computation in {Python}},
author={Toklu, Nihat Engin and Atkinson, Timothy and Micka, Vojt\v{e}ch and Liskowski, Pawe\l{} and Srivastava, Rupesh Kumar},
journal={arXiv preprint},
year={2023},
note={https://arxiv.org/abs/2302.12600}
}
贡献
欢迎贡献代码和提出建议!请参考我们的贡献指南。
作者
EvoTorch 是一个强大且灵活的进化计算库,无论您是研究者还是开发者,都能从中受益。立即加入我们,探索进化计算的无限可能!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355