xmake构建系统中的规则API与依赖顺序改进
xmake项目近期对其构建系统中的规则API和依赖顺序管理进行了重大改进,这些改进为构建流程提供了更精细的控制能力。本文将详细介绍这些技术改进的核心内容。
统一DAG实现
xmake现在采用统一的DAG(有向无环图)模型来管理构建任务。当用户没有显式指定任务顺序时,系统会自动根据内置构建规则建立默认的依赖关系。这种实现方式使得构建过程更加可靠和可预测。
细粒度的源文件依赖控制
新版本允许开发者以单个源文件为粒度精确控制构建顺序。通过jobgraph接口,可以为每个源文件的构建任务指定依赖关系,确保构建过程按照预期顺序执行。
实时构建任务管理
xmake现在支持在构建过程中动态添加和移除构建任务。这一特性为构建系统带来了更大的灵活性,使得可以根据构建过程中的实际情况调整构建计划。
构建准备阶段
新版本引入了构建准备阶段(prepare phase),在这个阶段可以执行C++模块依赖扫描等准备工作。这一改进特别适合需要预处理或分析的项目,确保后续构建阶段能够顺利进行。
规则顺序控制
开发者现在可以显式控制规则的执行顺序。通过add_orders接口,可以指定规则之间的前后关系,甚至可以插入自定义规则到内置规则之前执行。
任务分组支持
新版本引入了任务分组机制,允许将同一规则下的多个任务组织成逻辑组。这种分组不仅提高了构建过程的可管理性,还使得跨目标的任务依赖关系更加清晰。
兼容性与迁移
考虑到现有项目的兼容性,xmake提供了回退机制。开发者可以通过设置build.jobgraph策略来切换回旧的任务批处理模式,确保现有项目能够平滑过渡。
C++模块与PCH支持
虽然新版本改进了对C++模块的支持,但目前GCC/Clang对C++模块与预编译头文件(PCH)的组合支持仍有限制。开发者在同时使用这两项特性时需要注意可能的兼容性问题。
这些改进显著提升了xmake构建系统的灵活性和控制能力,为复杂项目的构建管理提供了更强大的工具集。开发者现在可以更精确地控制构建流程,处理更复杂的依赖关系,同时保持构建系统的高效性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00