Modelscope项目中处理NumPy负步长数组的解决方案
2025-05-29 20:22:40作者:邓越浪Henry
问题背景
在深度学习项目Modelscope中,当使用图像人体重塑模型(damo/cv_flow-based-body-reshaping_damo)处理输入图像时,可能会遇到一个与NumPy数组内存布局相关的技术问题。该问题表现为系统抛出ValueError异常,提示"At least one stride in the given numpy array is negative"。
技术原理分析
这个问题本质上源于NumPy数组的内存布局特性与PyTorch张量转换要求之间的不兼容性。NumPy数组的步长(stride)决定了在内存中访问数组元素时的步进方式。在某些情况下,特别是当数组是通过切片操作或特定转置操作创建时,可能会产生负步长。
PyTorch在设计上不支持具有负步长的张量,这是因为:
- 负步长会增加内存访问的复杂性
- 可能影响计算性能
- 与CUDA等加速硬件的内存模型不兼容
问题表现
当用户尝试将包含负步长的NumPy数组转换为PyTorch张量时,系统会抛出如下错误:
ValueError: At least one stride in the given numpy array is negative, and tensors with negative strides are not currently supported. (You can probably work around this by making a copy of your array with array.copy().)
解决方案
针对这一问题,可以通过修改Modelscope的base.py文件中的相关代码来解决。具体修改位置在文件第573行附近,在将NumPy数组转换为PyTorch张量之前,先对数组进行复制操作:
# 原始代码
return collate_fn(torch.from_numpy(data), device)
# 修改后代码
data = data.copy() # 确保数组具有正步长
return collate_fn(torch.from_numpy(data), device)
这一修改确保了传递给PyTorch的NumPy数组总是具有正步长,从而避免了转换错误。
深入理解
为什么简单的复制操作能解决这个问题?这是因为:
- NumPy的copy()方法会创建一个新的连续内存块
- 新创建的数组会采用默认的正步长内存布局
- 原始数组的任何特殊内存布局特性(包括负步长)都会被消除
最佳实践建议
- 在将任何NumPy数组转换为PyTorch张量前,先检查数组的flags属性
- 对于关键应用,可以添加防御性代码检查步长是否为负
- 考虑在数据预处理阶段就确保数组的内存布局符合要求
兼容性考虑
虽然这一解决方案在大多数情况下有效,但开发者需要注意:
- 复制操作会增加内存使用量
- 对于大型数组,可能影响性能
- 在某些特殊情况下,可能需要考虑更高效的内存处理方式
总结
NumPy与PyTorch之间的数据转换是深度学习项目中常见的操作,理解两者在内存布局上的差异对于解决类似问题至关重要。通过强制复制确保正步长的方法,虽然简单但有效,是处理这类兼容性问题的实用方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178