Modelscope项目中处理NumPy负步长数组的解决方案
2025-05-29 19:08:07作者:邓越浪Henry
问题背景
在深度学习项目Modelscope中,当使用图像人体重塑模型(damo/cv_flow-based-body-reshaping_damo)处理输入图像时,可能会遇到一个与NumPy数组内存布局相关的技术问题。该问题表现为系统抛出ValueError异常,提示"At least one stride in the given numpy array is negative"。
技术原理分析
这个问题本质上源于NumPy数组的内存布局特性与PyTorch张量转换要求之间的不兼容性。NumPy数组的步长(stride)决定了在内存中访问数组元素时的步进方式。在某些情况下,特别是当数组是通过切片操作或特定转置操作创建时,可能会产生负步长。
PyTorch在设计上不支持具有负步长的张量,这是因为:
- 负步长会增加内存访问的复杂性
- 可能影响计算性能
- 与CUDA等加速硬件的内存模型不兼容
问题表现
当用户尝试将包含负步长的NumPy数组转换为PyTorch张量时,系统会抛出如下错误:
ValueError: At least one stride in the given numpy array is negative, and tensors with negative strides are not currently supported. (You can probably work around this by making a copy of your array with array.copy().)
解决方案
针对这一问题,可以通过修改Modelscope的base.py文件中的相关代码来解决。具体修改位置在文件第573行附近,在将NumPy数组转换为PyTorch张量之前,先对数组进行复制操作:
# 原始代码
return collate_fn(torch.from_numpy(data), device)
# 修改后代码
data = data.copy() # 确保数组具有正步长
return collate_fn(torch.from_numpy(data), device)
这一修改确保了传递给PyTorch的NumPy数组总是具有正步长,从而避免了转换错误。
深入理解
为什么简单的复制操作能解决这个问题?这是因为:
- NumPy的copy()方法会创建一个新的连续内存块
- 新创建的数组会采用默认的正步长内存布局
- 原始数组的任何特殊内存布局特性(包括负步长)都会被消除
最佳实践建议
- 在将任何NumPy数组转换为PyTorch张量前,先检查数组的flags属性
- 对于关键应用,可以添加防御性代码检查步长是否为负
- 考虑在数据预处理阶段就确保数组的内存布局符合要求
兼容性考虑
虽然这一解决方案在大多数情况下有效,但开发者需要注意:
- 复制操作会增加内存使用量
- 对于大型数组,可能影响性能
- 在某些特殊情况下,可能需要考虑更高效的内存处理方式
总结
NumPy与PyTorch之间的数据转换是深度学习项目中常见的操作,理解两者在内存布局上的差异对于解决类似问题至关重要。通过强制复制确保正步长的方法,虽然简单但有效,是处理这类兼容性问题的实用方案。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194