Modelscope项目中模型微调时出现NaN/Inf问题的分析与解决
2025-05-29 01:20:36作者:虞亚竹Luna
问题背景
在使用Modelscope项目中的Qwen-1.8B大语言模型进行微调训练时,开发者遇到了一个常见但棘手的问题:模型权重中出现NaN(非数字)或Inf(无穷大)值。这种情况通常发生在深度学习模型的训练过程中,特别是在微调大型语言模型时。
问题现象
在微调过程中,系统检测到模型transformer层的多个组件(如注意力机制和MLP层)的权重参数出现了NaN或Inf值。具体表现为:
- 训练过程中控制台输出警告信息,提示在transformer.h.21到transformer.h.23层的多个权重矩阵中发现了异常值
- 在推理阶段尝试生成文本时,系统抛出RuntimeError,提示概率张量包含非法值(inf、nan或负数)
根本原因分析
经过技术分析,这类问题通常由以下几个因素导致:
- 数值不稳定:在大型语言模型中,特别是使用低精度(如FP16)训练时,容易出现数值上溢或下溢
- 学习率设置不当:过大的学习率会导致参数更新步长过大,使权重值"爆炸"到非法范围
- 梯度爆炸:在深度网络中,反向传播时梯度可能呈指数增长,最终导致参数更新异常
- 数据预处理问题:输入数据中包含异常值或未正确归一化
解决方案
针对这一问题,我们推荐以下解决方案:
1. 调整训练超参数
降低学习率是最直接有效的解决方案。对于Qwen这类大型模型,初始学习率建议设置在1e-5到5e-5范围内,而非原代码中的1e-4。同时可以启用梯度裁剪:
args = TrainingArguments(
learning_rate=5e-5, # 降低学习率
max_grad_norm=1.0, # 添加梯度裁剪
...
)
2. 启用混合精度训练
使用自动混合精度(AMP)训练可以有效减少数值不稳定性:
args = TrainingArguments(
fp16=True, # 启用FP16混合精度
...
)
3. 添加权重监控
在训练过程中实时监控权重变化,可以及早发现问题:
# 在训练循环中添加权重检查
for name, param in model.named_parameters():
if torch.isnan(param).any() or torch.isinf(param).any():
print(f"异常参数: {name}")
break
4. 数据预处理优化
确保输入数据经过适当处理:
- 检查tokenizer是否正确处理了特殊token
- 验证输入序列长度是否在合理范围内
- 确保标签掩码正确设置
预防措施
为避免类似问题再次发生,建议:
- 在训练初期使用较小的学习率进行热身(warmup)
- 定期保存模型检查点,以便在出现问题时可以回退
- 使用更稳定的优化器,如AdamW而非原生Adam
- 对模型输出进行数值稳定性检查
总结
在Modelscope项目中使用大型语言模型进行微调时,数值稳定性是需要特别关注的问题。通过合理配置训练参数、启用适当的技术手段(如混合精度训练和梯度裁剪),以及加强训练过程监控,可以有效预防和解决NaN/Inf问题。这些经验不仅适用于Qwen系列模型,对于其他大型语言模型的微调工作同样具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492