首页
/ 探索IKC:迭代内核校正的盲超分辨率技术

探索IKC:迭代内核校正的盲超分辨率技术

2024-06-08 18:29:55作者:邵娇湘

项目介绍 IKC(Iterative Kernel Correction)是基于深度学习的一种盲超分辨率技术。该项目由JasonGT开发,并在ArXiv上发布,其目标是解决图像放大过程中因内核失配导致的质量损失问题。IKC构建在BasicSR和MMSR的基础上,提供了一个强大的框架来纠正图像复原过程中的内核错误。

项目技术分析 IKC采用了一种迭代的内核校正策略,通过SFTMD(Spatial Frequency Transform Modulation Distortion)网络估计原始模糊内核,然后利用预训练的预测器和校正器网络进行迭代优化。其核心架构如图所示,包括输入的低分辨率(LR)图像,中间的内核估计以及最终高分辨率(HR)图像的重建。

探索IKC:迭代内核校正的盲超分辨率技术

项目及技术应用场景 IKC尤其适用于需要高质量图像恢复的场景,如数字视频修复、医学成像、遥感图像增强等。无论是在监控视频中提高清晰度,还是在旧照片修复中还原细节,IKC都能有效提升图像质量,减少由于内核不匹配引起的图像失真。

项目特点

  1. 盲超分辨率:无需预先知道下采样内核,可以处理各种未知的降质过程。
  2. 迭代内核校正:通过不断的内核修正,逐步改善图像恢复效果。
  3. 强大基线:建立在BasicSR和MMSR之上,继承了这两个知名库的高效性能与稳定性。
  4. 灵活配置:用户可以通过.yaml文件调整不同设置,如放大倍数、内核标准差等。
  5. 全面支持:提供了详细的安装指南、数据准备步骤以及预训练模型,方便用户快速上手。

开始你的超分辨率之旅 要开始使用IKC,首先克隆项目仓库,接着安装必要的依赖库和环境。之后,根据提供的脚本生成低分辨率图像及其对应的内核映射,最后训练和测试模型,享受由IKC带来的图像质量提升。

git clone https://github.com/yuanjunchai/IKC.git
cd IKC
# 安装依赖
# 配置数据集
# 训练模型
# 测试模型

引用此项目的论文时,请按照以下格式:

@InProceedings{gu2019blind,
    author = {Gu, Jinjin and Lu, Hannan and Zuo, Wangmeng and Dong, Chao},
    title = {Blind super-resolution with iterative kernel correction},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}

加入IKC的世界,让我们一起探索超分辨率的新边界!

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.02 K
kernelkernel
deepin linux kernel
C
22
6
pytorchpytorch
Ascend Extension for PyTorch
Python
42
75
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
529
55
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
946
556
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
197
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
372
13
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71