探索IKC:迭代内核校正的盲超分辨率技术
2024-06-08 18:29:55作者:邵娇湘
项目介绍 IKC(Iterative Kernel Correction)是基于深度学习的一种盲超分辨率技术。该项目由JasonGT开发,并在ArXiv上发布,其目标是解决图像放大过程中因内核失配导致的质量损失问题。IKC构建在BasicSR和MMSR的基础上,提供了一个强大的框架来纠正图像复原过程中的内核错误。
项目技术分析 IKC采用了一种迭代的内核校正策略,通过SFTMD(Spatial Frequency Transform Modulation Distortion)网络估计原始模糊内核,然后利用预训练的预测器和校正器网络进行迭代优化。其核心架构如图所示,包括输入的低分辨率(LR)图像,中间的内核估计以及最终高分辨率(HR)图像的重建。
项目及技术应用场景 IKC尤其适用于需要高质量图像恢复的场景,如数字视频修复、医学成像、遥感图像增强等。无论是在监控视频中提高清晰度,还是在旧照片修复中还原细节,IKC都能有效提升图像质量,减少由于内核不匹配引起的图像失真。
项目特点
- 盲超分辨率:无需预先知道下采样内核,可以处理各种未知的降质过程。
- 迭代内核校正:通过不断的内核修正,逐步改善图像恢复效果。
- 强大基线:建立在BasicSR和MMSR之上,继承了这两个知名库的高效性能与稳定性。
- 灵活配置:用户可以通过.yaml文件调整不同设置,如放大倍数、内核标准差等。
- 全面支持:提供了详细的安装指南、数据准备步骤以及预训练模型,方便用户快速上手。
开始你的超分辨率之旅 要开始使用IKC,首先克隆项目仓库,接着安装必要的依赖库和环境。之后,根据提供的脚本生成低分辨率图像及其对应的内核映射,最后训练和测试模型,享受由IKC带来的图像质量提升。
git clone https://github.com/yuanjunchai/IKC.git
cd IKC
# 安装依赖
# 配置数据集
# 训练模型
# 测试模型
引用此项目的论文时,请按照以下格式:
@InProceedings{gu2019blind,
author = {Gu, Jinjin and Lu, Hannan and Zuo, Wangmeng and Dong, Chao},
title = {Blind super-resolution with iterative kernel correction},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
加入IKC的世界,让我们一起探索超分辨率的新边界!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie033
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
834
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
go-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4