探索IKC:迭代内核校正的盲超分辨率技术
2024-06-08 18:29:55作者:邵娇湘
项目介绍 IKC(Iterative Kernel Correction)是基于深度学习的一种盲超分辨率技术。该项目由JasonGT开发,并在ArXiv上发布,其目标是解决图像放大过程中因内核失配导致的质量损失问题。IKC构建在BasicSR和MMSR的基础上,提供了一个强大的框架来纠正图像复原过程中的内核错误。
项目技术分析 IKC采用了一种迭代的内核校正策略,通过SFTMD(Spatial Frequency Transform Modulation Distortion)网络估计原始模糊内核,然后利用预训练的预测器和校正器网络进行迭代优化。其核心架构如图所示,包括输入的低分辨率(LR)图像,中间的内核估计以及最终高分辨率(HR)图像的重建。

项目及技术应用场景 IKC尤其适用于需要高质量图像恢复的场景,如数字视频修复、医学成像、遥感图像增强等。无论是在监控视频中提高清晰度,还是在旧照片修复中还原细节,IKC都能有效提升图像质量,减少由于内核不匹配引起的图像失真。
项目特点
- 盲超分辨率:无需预先知道下采样内核,可以处理各种未知的降质过程。
- 迭代内核校正:通过不断的内核修正,逐步改善图像恢复效果。
- 强大基线:建立在BasicSR和MMSR之上,继承了这两个知名库的高效性能与稳定性。
- 灵活配置:用户可以通过.yaml文件调整不同设置,如放大倍数、内核标准差等。
- 全面支持:提供了详细的安装指南、数据准备步骤以及预训练模型,方便用户快速上手。
开始你的超分辨率之旅 要开始使用IKC,首先克隆项目仓库,接着安装必要的依赖库和环境。之后,根据提供的脚本生成低分辨率图像及其对应的内核映射,最后训练和测试模型,享受由IKC带来的图像质量提升。
git clone https://github.com/yuanjunchai/IKC.git
cd IKC
# 安装依赖
# 配置数据集
# 训练模型
# 测试模型
引用此项目的论文时,请按照以下格式:
@InProceedings{gu2019blind,
author = {Gu, Jinjin and Lu, Hannan and Zuo, Wangmeng and Dong, Chao},
title = {Blind super-resolution with iterative kernel correction},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
加入IKC的世界,让我们一起探索超分辨率的新边界!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869