DICE-Talk 项目启动与配置教程
2025-05-17 10:13:00作者:房伟宁
1. 项目目录结构及介绍
DICE-Talk 项目是一个基于扩散模型的情绪化说话人头生成方法,能够为说话人肖像生成生动多样的情绪。以下是项目的目录结构及其介绍:
DICE-Talk/
├── checkpoints/ # 存储预训练模型和生成的权重文件
├── config/ # 配置文件目录
├── examples/ # 示例文件和图片
├── src/ # 源代码目录
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
├── demo.py # 演示脚本
├── demo.sh # 演示脚本的shell脚本
├── dice_talk.py # 核心功能实现脚本
├── gradio_app.py # GUI应用脚本
└── requirements.txt # 项目依赖文件
checkpoints/:存储预训练模型文件和生成过程中使用的权重文件。config/:包含项目的配置文件,如dice_talk.yaml等。examples/:存放项目示例输入文件,如图片和音频等。src/:项目的主要源代码,包括模型定义、数据处理等。LICENSE:项目的开源许可证。README.md:项目的说明文档,介绍项目的详细信息。demo.py:用于运行项目演示的Python脚本。demo.sh:用于运行demo.py的shell脚本。dice_talk.py:项目的主要逻辑实现脚本。gradio_app.py:用于创建GUI应用的Python脚本。requirements.txt:项目运行所需的依赖列表。
2. 项目的启动文件介绍
项目的启动主要通过demo.py和demo.sh两个文件进行。
-
demo.py:这是一个Python脚本,用于执行项目的演示功能。通过指定输入图片、音频文件、情绪类型以及输出视频的路径,可以生成带有指定情绪的说话人头视频。 -
demo.sh:这是一个shell脚本,用于在命令行中运行demo.py脚本。使用时,需要为脚本中的变量指定正确的路径。
启动演示的示例命令如下:
python3 demo.py --image_path /path/to/input_image --audio_path /path/to/input_audio --emotion_path /path/to/input_emotion --output_path /path/to/output_video
3. 项目的配置文件介绍
项目的配置文件位于config/目录中,主要包含以下文件:
dice_talk.yaml:这是项目的核心配置文件,包含模型配置、训练参数、数据处理参数等。用户可以根据自己的需求修改这些参数来调整模型的行为。
配置文件示例内容如下:
# dice_talk.yaml
model:
name: dice_talk
audio_linear_path: checkpoints/DICE-Talk/audio_linear.pth
emotion_model_path: checkpoints/DICE-Talk/emo_model.pth
pose_guider_path: checkpoints/DICE-Talk/pose_guider.pth
unet_path: checkpoints/DICE-Talk/unet.pth
data:
image_size: 512
emotion_list: ['neutral', 'happy', 'angry', 'surprised']
training:
batch_size: 16
learning_rate: 0.0001
epochs: 100
通过修改这个配置文件,用户可以自定义模型的行为和性能。在运行项目之前,请确保配置文件中的参数设置正确。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882