Whisper TFLite 项目使用教程
2024-09-19 13:56:15作者:盛欣凯Ernestine
1. 项目介绍
1.1 项目概述
Whisper TFLite 项目是基于 OpenAI 的 Whisper 模型的一个优化版本,专门为 Android 和 iOS 平台设计的量化 TFLite 模型。该项目旨在提供高效的离线推理能力,适用于边缘设备上的各种应用场景。
1.2 主要特点
- 量化模型:优化后的模型体积更小,适合移动设备。
- 跨平台支持:支持 Android 和 iOS 平台。
- 高效推理:在边缘设备上提供快速的语音识别能力。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下工具和库:
- Git
- Android Studio(用于 Android 开发)
- Xcode(用于 iOS 开发)
2.2 克隆项目
首先,克隆 Whisper TFLite 项目到本地:
git clone https://github.com/nyadla-sys/whisper.tflite.git
2.3 集成到 Android 项目
- 打开 Android Studio,创建一个新的 Android 项目或打开现有项目。
- 将克隆的项目中的
whisper_android文件夹复制到你的项目中。 - 在
build.gradle文件中添加必要的依赖项:
dependencies {
implementation 'org.tensorflow:tensorflow-lite:2.4.0'
implementation 'org.tensorflow:tensorflow-lite-support:0.1.0'
}
- 在项目中加载和使用 Whisper TFLite 模型:
import org.tensorflow.lite.Interpreter;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
public class WhisperModel {
private Interpreter interpreter;
public WhisperModel(File modelFile) throws IOException {
FileChannel fileChannel = new FileInputStream(modelFile).getChannel();
MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());
interpreter = new Interpreter(mappedByteBuffer);
}
public void runInference(float[][] input, float[][] output) {
interpreter.run(input, output);
}
}
2.4 集成到 iOS 项目
- 打开 Xcode,创建一个新的 iOS 项目或打开现有项目。
- 将克隆的项目中的
whisper_ios文件夹复制到你的项目中。 - 在项目中加载和使用 Whisper TFLite 模型:
import TensorFlowLite
class WhisperModel {
private var interpreter: Interpreter
init(modelPath: String) throws {
self.interpreter = try Interpreter(modelPath: modelPath)
}
func runInference(input: Tensor, output: inout Tensor) throws {
try interpreter.run(input: input, output: &output)
}
}
3. 应用案例和最佳实践
3.1 语音助手
Whisper TFLite 可以用于构建离线的语音助手应用,提供快速的语音识别和响应能力。
3.2 实时语音转文字
在会议记录、实时翻译等场景中,Whisper TFLite 可以提供高效的语音转文字服务。
3.3 隐私保护
由于模型可以在本地运行,Whisper TFLite 特别适合需要高隐私保护的应用场景。
4. 典型生态项目
4.1 OpenVoiceOS
OpenVoiceOS 是一个开源的语音操作系统,Whisper TFLite 可以作为其语音识别模块,提供高效的离线语音识别能力。
4.2 DTLN
DTLN 是一个用于实时噪声抑制的模型,可以与 Whisper TFLite 结合使用,提供噪声抑制后的语音识别服务。
4.3 AudioRecorder
AudioRecorder 是一个开源的音频录制应用,可以与 Whisper TFLite 结合,提供音频录制和实时转写功能。
通过以上步骤,你可以快速上手 Whisper TFLite 项目,并在你的移动应用中集成高效的语音识别功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
【免费下载】 JDK 8 和 JDK 17 无缝切换及 IDEA 和 【maven下载安装与配置】 DirectX修复工具【亲测免费】 让经典焕发新生:使用 Visual Studio Code 作为 Visual C++ 6.0 编辑器【亲测免费】 抖音直播助手:douyin-live-go 项目推荐【亲测免费】 ActivityManager 使用指南【亲测免费】 使用Docker-Compose部署达梦DEM管理工具(适用于Mac M1系列)【免费下载】 Windows Keepalived:Windows系统上的高可用性解决方案 Matlab物理建模仿真利器——Simscape及其编程语言Simscape Language学习资源推荐【亲测免费】 Windows10安装Hadoop 3.1.3详细教程【亲测免费】 开源项目 gkd-kit/gkd 常见问题解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870