Whisper TFLite 项目使用教程
2024-09-19 16:30:14作者:盛欣凯Ernestine
whisper.tflite
Optimized OpenAI's Whisper TFLite Port for Efficient Offline Inference on Edge Devices
1. 项目介绍
1.1 项目概述
Whisper TFLite 项目是基于 OpenAI 的 Whisper 模型的一个优化版本,专门为 Android 和 iOS 平台设计的量化 TFLite 模型。该项目旨在提供高效的离线推理能力,适用于边缘设备上的各种应用场景。
1.2 主要特点
- 量化模型:优化后的模型体积更小,适合移动设备。
- 跨平台支持:支持 Android 和 iOS 平台。
- 高效推理:在边缘设备上提供快速的语音识别能力。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下工具和库:
- Git
- Android Studio(用于 Android 开发)
- Xcode(用于 iOS 开发)
2.2 克隆项目
首先,克隆 Whisper TFLite 项目到本地:
git clone https://github.com/nyadla-sys/whisper.tflite.git
2.3 集成到 Android 项目
- 打开 Android Studio,创建一个新的 Android 项目或打开现有项目。
- 将克隆的项目中的
whisper_android
文件夹复制到你的项目中。 - 在
build.gradle
文件中添加必要的依赖项:
dependencies {
implementation 'org.tensorflow:tensorflow-lite:2.4.0'
implementation 'org.tensorflow:tensorflow-lite-support:0.1.0'
}
- 在项目中加载和使用 Whisper TFLite 模型:
import org.tensorflow.lite.Interpreter;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
public class WhisperModel {
private Interpreter interpreter;
public WhisperModel(File modelFile) throws IOException {
FileChannel fileChannel = new FileInputStream(modelFile).getChannel();
MappedByteBuffer mappedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());
interpreter = new Interpreter(mappedByteBuffer);
}
public void runInference(float[][] input, float[][] output) {
interpreter.run(input, output);
}
}
2.4 集成到 iOS 项目
- 打开 Xcode,创建一个新的 iOS 项目或打开现有项目。
- 将克隆的项目中的
whisper_ios
文件夹复制到你的项目中。 - 在项目中加载和使用 Whisper TFLite 模型:
import TensorFlowLite
class WhisperModel {
private var interpreter: Interpreter
init(modelPath: String) throws {
self.interpreter = try Interpreter(modelPath: modelPath)
}
func runInference(input: Tensor, output: inout Tensor) throws {
try interpreter.run(input: input, output: &output)
}
}
3. 应用案例和最佳实践
3.1 语音助手
Whisper TFLite 可以用于构建离线的语音助手应用,提供快速的语音识别和响应能力。
3.2 实时语音转文字
在会议记录、实时翻译等场景中,Whisper TFLite 可以提供高效的语音转文字服务。
3.3 隐私保护
由于模型可以在本地运行,Whisper TFLite 特别适合需要高隐私保护的应用场景。
4. 典型生态项目
4.1 OpenVoiceOS
OpenVoiceOS 是一个开源的语音操作系统,Whisper TFLite 可以作为其语音识别模块,提供高效的离线语音识别能力。
4.2 DTLN
DTLN 是一个用于实时噪声抑制的模型,可以与 Whisper TFLite 结合使用,提供噪声抑制后的语音识别服务。
4.3 AudioRecorder
AudioRecorder 是一个开源的音频录制应用,可以与 Whisper TFLite 结合,提供音频录制和实时转写功能。
通过以上步骤,你可以快速上手 Whisper TFLite 项目,并在你的移动应用中集成高效的语音识别功能。
whisper.tflite
Optimized OpenAI's Whisper TFLite Port for Efficient Offline Inference on Edge Devices
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型016kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
Far2l项目在Wayland环境下的输入处理优化方案 QuTiP项目中实现位移Drude-Lorentz浴的HEOM求解方法 PrimeFaces中SelectOneRadio组件点击区域优化实践 Calva扩展对Vim运动命令的影响分析与解决方案 Stryker.NET 项目中处理源码式 NuGet 包的特殊挑战 Turms即时通讯系统中系统消息持久化机制解析 rest.nvim中缓冲区局部键绑定的优化实践 ESP-ADF中PWM音频流播放完成时的数据刷新问题分析 far2l项目中Ctrl+Shift+方向键失效问题的解决方案 React-Codemirror 项目中 exports 未定义错误分析与解决方案
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
292
857

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
486
392

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
356
300

React Native鸿蒙化仓库
C++
111
195

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
365
37

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
578
41

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
977
0

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
688
86

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
51
52