活字通用大模型项目使用教程
2024-09-26 16:37:17作者:农烁颖Land
1. 项目的目录结构及介绍
活字通用大模型项目的目录结构如下:
huozi/
├── data/
├── evaluate/
├── example/
├── image/
├── pdf/
├── .gitignore
├── .gitmodules
├── LICENSE
├── README-v1v2.md
├── README-v3.md
├── README.md
└── quickstart.py
目录介绍
- data/: 存放项目的数据文件,包括训练数据和测试数据。
- evaluate/: 存放评估模型的脚本和工具。
- example/: 包含使用模型的示例代码和演示。
- image/: 存放项目相关的图片文件。
- pdf/: 存放项目相关的PDF文档。
- .gitignore: Git忽略文件,指定哪些文件或目录不需要被Git管理。
- .gitmodules: Git子模块配置文件,用于管理外部依赖。
- LICENSE: 项目的开源许可证文件。
- README-v1v2.md: 项目的版本1和版本2的说明文档。
- README-v3.md: 项目的版本3的说明文档。
- README.md: 项目的主说明文档。
- quickstart.py: 项目的启动文件,用于快速开始使用模型。
2. 项目的启动文件介绍
quickstart.py
quickstart.py
是活字通用大模型的启动文件,提供了快速开始使用模型的功能。该文件包含了模型的加载、推理和生成示例代码。
主要功能
- 模型加载: 从预训练模型中加载活字通用大模型。
- 推理: 提供模型的推理接口,支持多种推理框架,如vLLM、llama.cpp、Ollama等。
- 生成示例: 提供生成示例代码,展示如何使用模型生成文本。
使用示例
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "HIT-SCIR/huozi3.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto"
)
text = """<|beginofutterance|>系统 你是一个智能助手<|endofutterance|>
<|beginofutterance|>用户 请你用python写一段快速排序的代码<|endofutterance|>
<|beginofutterance|>助手 """
inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(
**inputs,
eos_token_id=57001,
temperature=0.8,
top_p=0.9,
max_new_tokens=2048
)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
3. 项目的配置文件介绍
.gitignore
.gitignore
文件用于指定哪些文件或目录不需要被Git管理。例如,临时文件、日志文件、编译输出文件等可以被忽略。
.gitmodules
.gitmodules
文件用于管理Git子模块,指定项目依赖的外部库或模块。
LICENSE
LICENSE
文件包含了项目的开源许可证信息,说明项目的使用条款和条件。
README.md
README.md
是项目的主说明文档,包含了项目的概述、安装指南、使用说明、贡献指南等内容。
README-v1v2.md
和 README-v3.md
README-v1v2.md
和 README-v3.md
分别包含了项目版本1、版本2和版本3的详细说明文档,介绍了各个版本的特性和更新内容。
通过以上介绍,您可以快速了解活字通用大模型的项目结构、启动文件和配置文件,从而更好地使用和配置该项目。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4