活字通用大模型项目使用教程
2024-09-26 17:32:02作者:农烁颖Land
1. 项目的目录结构及介绍
活字通用大模型项目的目录结构如下:
huozi/
├── data/
├── evaluate/
├── example/
├── image/
├── pdf/
├── .gitignore
├── .gitmodules
├── LICENSE
├── README-v1v2.md
├── README-v3.md
├── README.md
└── quickstart.py
目录介绍
- data/: 存放项目的数据文件,包括训练数据和测试数据。
- evaluate/: 存放评估模型的脚本和工具。
- example/: 包含使用模型的示例代码和演示。
- image/: 存放项目相关的图片文件。
- pdf/: 存放项目相关的PDF文档。
- .gitignore: Git忽略文件,指定哪些文件或目录不需要被Git管理。
- .gitmodules: Git子模块配置文件,用于管理外部依赖。
- LICENSE: 项目的开源许可证文件。
- README-v1v2.md: 项目的版本1和版本2的说明文档。
- README-v3.md: 项目的版本3的说明文档。
- README.md: 项目的主说明文档。
- quickstart.py: 项目的启动文件,用于快速开始使用模型。
2. 项目的启动文件介绍
quickstart.py
quickstart.py 是活字通用大模型的启动文件,提供了快速开始使用模型的功能。该文件包含了模型的加载、推理和生成示例代码。
主要功能
- 模型加载: 从预训练模型中加载活字通用大模型。
- 推理: 提供模型的推理接口,支持多种推理框架,如vLLM、llama.cpp、Ollama等。
- 生成示例: 提供生成示例代码,展示如何使用模型生成文本。
使用示例
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "HIT-SCIR/huozi3.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto"
)
text = """<|beginofutterance|>系统 你是一个智能助手<|endofutterance|>
<|beginofutterance|>用户 请你用python写一段快速排序的代码<|endofutterance|>
<|beginofutterance|>助手 """
inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(
**inputs,
eos_token_id=57001,
temperature=0.8,
top_p=0.9,
max_new_tokens=2048
)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
3. 项目的配置文件介绍
.gitignore
.gitignore 文件用于指定哪些文件或目录不需要被Git管理。例如,临时文件、日志文件、编译输出文件等可以被忽略。
.gitmodules
.gitmodules 文件用于管理Git子模块,指定项目依赖的外部库或模块。
LICENSE
LICENSE 文件包含了项目的开源许可证信息,说明项目的使用条款和条件。
README.md
README.md 是项目的主说明文档,包含了项目的概述、安装指南、使用说明、贡献指南等内容。
README-v1v2.md 和 README-v3.md
README-v1v2.md 和 README-v3.md 分别包含了项目版本1、版本2和版本3的详细说明文档,介绍了各个版本的特性和更新内容。
通过以上介绍,您可以快速了解活字通用大模型的项目结构、启动文件和配置文件,从而更好地使用和配置该项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493