Drake项目在Noble系统上CI测试环境构建的技术挑战与解决方案
在Drake机器人仿真框架的持续集成(CI)系统升级过程中,开发团队遇到了一个关于Ubuntu Noble系统环境下测试覆盖率工具集成的技术问题。本文将详细分析问题的技术背景、诊断过程以及最终的解决方案。
问题背景
开发团队在为Drake项目准备Ubuntu Noble(Noble Numbat)系统的CI环境时,需要构建新的Amazon Machine Image(AMI)镜像。这个新镜像需要包含支持代码覆盖率分析的工具链,特别是kcov工具。当团队尝试在新的Noble系统上运行测试覆盖率作业时,发现工具链中的Python测试用例出现了意外失败。
技术分析
测试失败发生在tools/lint:py/util_test这个Python测试目标上。从错误日志可以看出,测试用例在尝试执行find_all_sources函数时,无法找到项目中的.bazelproject文件。这个函数原本的设计目的是通过检查MANIFEST文件来定位项目源代码。
深入分析发现几个关键点:
-
kcov工具链的影响:错误日志显示kcov在运行时发出了警告,提示缺少libbfd-dev或binutils-dev开发库。这表明覆盖率工具链的环境配置可能影响了测试的正常执行路径。
-
路径搜索逻辑问题:测试用例中的路径搜索逻辑在kcov包装环境下表现异常,导致无法正确解析项目文件结构。这种问题在常规测试环境下不会出现,只有在覆盖率收集的特殊环境下才会触发。
-
环境隔离特性:Bazel构建系统通常会在沙盒环境中执行测试,这可能导致某些文件查找逻辑在特殊环境下失效。
解决方案
经过技术评估,团队决定采用以下解决方案:
-
标记排除策略:为有问题的测试目标添加
no_kcov标签,将其从覆盖率测试中排除。这种方法既解决了当前问题,又不会影响其他测试场景。 -
环境配置完善:虽然当前问题通过排除法解决,但团队注意到kcov工具链依赖的警告,这提示未来可能需要完善基础镜像中的开发库依赖。
技术启示
这个案例为大型项目CI系统升级提供了几点重要经验:
-
环境特异性问题:CI环境中的工具链组合可能引发在开发环境中不会出现的问题,需要建立完善的测试矩阵。
-
渐进式迁移策略:新系统环境的迁移应该采用渐进式策略,允许某些测试目标暂时性排除。
-
工具链兼容性:覆盖率工具等诊断性工具可能会影响程序的实际执行路径,需要在设计测试用例时考虑这种可能性。
Drake团队通过这个问题处理过程,进一步完善了其CI系统的健壮性,为后续全面迁移到Noble系统奠定了基础。这种技术问题的解决方式也展示了开源项目在面临复杂系统集成挑战时的务实态度和高效决策。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00