Equinox项目中的Sharding技术解析:模型与输入数据并行处理
2025-07-02 15:48:10作者:翟江哲Frasier
背景介绍
在深度学习领域,随着模型规模的不断扩大,单设备训练已经无法满足需求。分布式训练技术应运而生,其中Sharding(分片)是一种重要的并行计算策略。Equinox作为基于JAX的深度学习库,其Sharding实现方式值得深入探讨。
Sharding的基本概念
Sharding技术本质上是一种将计算任务和数据分布到多个设备上的方法。在深度学习中,我们通常需要处理两种主要类型的分片:
- 模型参数分片:将大型模型的参数分布到不同设备上
- 数据分片:将训练数据批次分布到不同设备上
Equinox中的Sharding实现
Equinox项目最近引入了一个关键函数filter_shard
,它优雅地解决了模型和数据分片的问题。这个函数的设计思路非常巧妙:
def filter_shard(x: PyTree[Any], device_or_shard: Device | Sharding):
if isinstance(device_or_shard, Device):
shardings = SingleDeviceSharding(device_or_shard)
else:
shardings = device_or_shard
dynamic, static = partition(x, is_array)
dynamic = with_sharding_constraint(dynamic, shardings)
return combine(dynamic, static)
这个实现有几个关键优势:
- 统一了设备放置和分片约束的接口
- 自动处理PyTree结构中的数组和非数组部分
- 简洁高效,无需复杂的条件判断
技术细节分析
设备与分片的统一处理
filter_shard
函数的一个巧妙之处在于它能够同时处理设备(Device)和分片(Sharding)对象。通过简单的类型检查,如果是设备对象就转换为单设备分片,保持了接口的一致性。
PyTree结构的处理
Equinox使用partition
和combine
函数来处理PyTree结构,这确保了:
- 只有数组部分会被分片
- 非数组部分保持不变
- 保持了原始PyTree的结构完整性
性能考量
在实现Sharding时,性能是需要重点考虑的因素:
- 避免在热点路径中进行昂贵的操作
- 最小化分片操作的开销
- 保持JAX的优化能力
实际应用示例
以下是一个完整的Sharding应用示例:
# 创建模型和数据
model = eqx.nn.MLP(data_dim, data_dim, hidden_size, depth, key=key)
x = jr.uniform(key, (data_dim,))
# 创建分片策略
devices = mesh_utils.create_device_mesh((num_devices, 1))
sharding = PositionalSharding(devices)
# 应用分片
model = eqx.filter_shard(model, sharding)
x = eqx.filter_shard(x, sharding)
# JIT编译计算
@eqx.filter_jit
def compute(model, x):
model = eqx.filter_shard(model, sharding.replicate())
return model(x)
result = compute(model, x)
多设备与跨后端考虑
在实际部署中,还需要考虑:
- 多主机环境下的分片有效性
- 不同后端设备间的数据传输
- 分片策略的可扩展性
Equinox的实现目前能够很好地处理单机多设备场景,对于更复杂的分布式场景,可能需要结合其他工具如Levanter等。
总结
Equinox通过filter_shard
函数提供了一种简洁而强大的Sharding解决方案。这种实现方式:
- 统一了设备放置和分片约束的接口
- 保持了JAX的自动并行优化能力
- 易于使用且扩展性强
随着JAX生态系统的不断发展,Equinox的Sharding支持也将持续完善,为大规模模型训练提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133