QwenLM项目中的模型输入参数问题解析
2025-05-12 22:14:25作者:彭桢灵Jeremy
在使用QwenLM/Qwen项目进行模型微调时,开发者可能会遇到一个典型的错误提示:TypeError: QWenLMHeadModel.forward() got an unexpected keyword argument 'decoder_input_ids'。这个错误看似简单,但实际上反映了对模型架构理解的关键问题。
问题本质
这个错误的核心在于模型架构类型的误用。QwenLMHeadModel是一个典型的decoder-only架构模型,这与sequence-to-sequence(seq2seq)架构有本质区别。在decoder-only模型中,整个处理流程都是基于单一的decoder结构,因此不存在独立的encoder-decoder交互机制。
技术背景
在Transformer架构中,主要存在三种模型类型:
- Encoder-only(如BERT)
- Decoder-only(如GPT系列、Qwen)
- Encoder-Decoder(如BART、T5)
当开发者尝试将seq2seq训练模式应用于decoder-only模型时,就会遇到上述错误。这是因为seq2seq训练流程通常会传入decoder_input_ids参数,用于指导decoder部分的输入,而decoder-only模型根本不具备处理这个参数的能力。
解决方案
对于Qwen这类decoder-only模型的微调,应该:
- 仅使用
input_ids作为输入 - 通过attention mask控制可见范围
- 使用标准的语言模型训练方式(预测下一个token)
最佳实践建议
- 在开始微调前,务必确认模型的架构类型
- 参考官方提供的微调示例代码
- 对于decoder-only模型,使用标准的语言模型微调方法
- 注意输入参数的命名和格式要求
深入理解
decoder-only模型之所以不需要decoder_input_ids,是因为它的工作方式是自回归的:每次处理当前token并预测下一个token,整个过程都在同一个decoder结构中完成。这与seq2seq模型需要明确区分encoder输入和decoder输入的设计哲学完全不同。
通过理解这个错误背后的原理,开发者可以更好地掌握不同架构Transformer模型的使用方法,避免类似的参数传递错误。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
240
2.37 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
999
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
118
Ascend Extension for PyTorch
Python
78
111
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56