FreeSql中忽略自增列在On Conflict Do Update时的处理技巧
在使用FreeSql进行PostgreSQL数据库操作时,开发者可能会遇到一个常见问题:当使用OnConflictDoUpdate功能时,即使通过IgnoreColumns方法尝试忽略自增列,这些列仍然会被包含在INSERT语句中。本文将深入分析这一现象的原因,并提供几种实用的解决方案。
问题现象分析
当实体类中标记了[Column(IsIdentity = true)]特性的属性时,FreeSql默认会将这些自增列包含在所有INSERT操作中。即使使用了以下两种方式尝试忽略:
- 使用
IgnoreColumns方法显式忽略 - 使用
InsertColumns方法指定只插入特定列
生成的SQL语句仍然会包含自增列,例如:
INSERT INTO CodeFirstEntity(id, identity, str_name) VALUES(1, 0, 'name')
ON CONFLICT(id) DO NOTHING
而开发者期望的SQL应该是:
INSERT INTO CodeFirstEntity(id, str_name) VALUES(1, 'name')
ON CONFLICT(id) DO NOTHING
解决方案
方案一:移除IsIdentity特性
最直接的解决方案是从实体类中移除IsIdentity = true的特性标记:
[Column(Name = "identity", CanInsert = false)]
public long Identity { get; set; }
但这种方法不适用于需要依赖FreeSql自动建表的场景,因为自增特性在建表时是必要的。
方案二:使用DTO模式
创建一个专门用于插入操作的DTO类,不包含自增属性:
public class CodeFirstEntityInsertDto
{
public long Id { get; set; }
public string str_name { get; set; } = string.Empty;
}
// 使用方式
var dto = new CodeFirstEntityInsertDto
{
Id = 1,
str_name = "name"
};
var sql = fsql.Insert(dto)
.NoneParameter()
.OnConflictDoUpdate()
.DoNothing()
.ToSql();
这种方法虽然需要额外维护一个DTO类,但能很好地解决插入时的列控制问题。
方案三:动态修改插入列
对于不想创建额外类的情况,可以使用匿名对象动态指定插入列:
var sql = fsql.Insert<CodeFirstEntity>()
.AppendData(new { Id = 1, str_name = "name" })
.NoneParameter()
.OnConflictDoUpdate()
.DoNothing()
.ToSql();
技术原理
FreeSql在设计上对自增列有特殊处理逻辑。当属性标记为IsIdentity = true时,FreeSql会认为该列是表结构的重要组成部分,因此在生成SQL时会优先考虑包含这些列,以确保数据完整性。这种设计在大多数情况下是有益的,但在使用PostgreSQL的ON CONFLICT语法时可能会带来不便。
最佳实践建议
-
对于需要频繁使用
OnConflictDoUpdate的场景,建议采用DTO模式,保持实体类的完整性同时获得灵活的插入控制。 -
如果项目中有大量此类需求,可以考虑扩展FreeSql的功能,通过自定义插入生成器来覆盖默认行为。
-
在设计数据库表时,合理规划自增列的使用,避免在不必要的列上设置自增属性。
通过以上方法,开发者可以灵活处理FreeSql中自增列在冲突更新时的插入行为,满足各种业务场景的需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00