Apache Arrow C++库中Rank实现的优化重构
背景介绍
Apache Arrow作为一个跨语言的内存数据格式,其C++实现中包含了丰富的数据处理功能。其中,Rank(排名)计算是一个常用的数据分析操作,用于确定数据集中每个元素的相对位置。
原有实现的问题
在Arrow C++库的原始实现中,Rank功能存在两个主要的设计问题:
-
功能耦合:原有的
CreateRankings函数将"平局检测"(ties detection)和"排名计算"这两个逻辑上独立的操作混合在一起实现。这种设计违反了单一职责原则。 -
代码膨胀:由于两个功能耦合在一起,导致生成的机器代码体积增大,影响了性能。
-
扩展困难:这种设计使得实现更复杂的排名变体(如百分位排名)变得困难,因为无法复用现有的平局检测逻辑。
优化方案
为了解决这些问题,开发团队决定对Rank实现进行重构,主要包含以下改进:
-
关注点分离:将平局检测和排名计算拆分为两个独立的逻辑阶段。
-
接口清晰化:定义明确的函数边界,使每个函数只负责一个明确的任务。
-
代码复用:通过解耦,使得平局检测逻辑可以被不同的排名变体复用。
技术实现细节
重构后的实现采用了更模块化的设计:
-
平局检测阶段:首先扫描输入数据,识别出所有值相同的元素组(平局组)。
-
排名计算阶段:根据不同的排名策略(如密集排名、标准排名等),基于平局检测结果计算最终排名。
这种分离使得:
- 代码更易于理解和维护
- 减少了重复代码
- 提高了性能(通过减少生成的代码量)
- 为未来添加新的排名变体(如百分位排名)奠定了基础
性能考量
重构带来的性能改进主要体现在:
-
代码体积减小:由于消除了重复逻辑,生成的机器代码更精简。
-
缓存友好:分离后的处理步骤可以更好地利用CPU缓存。
-
并行化潜力:解耦后的设计为未来可能的并行化实现提供了更好的基础。
总结
这次对Apache Arrow C++库中Rank实现的重构,展示了良好软件设计原则在实际项目中的应用价值。通过关注点分离和模块化设计,不仅解决了现有的问题,还为未来的功能扩展奠定了更好的基础。这种优化方式值得在其他类似的数据处理功能中借鉴。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00