Flagger项目中从HPA迁移至KEDA Scaled Object的实践指南
背景介绍
在Kubernetes生态系统中,Flagger作为一款渐进式交付工具,常与Horizontal Pod Autoscaler(HPA)或KEDA Scaled Object结合使用来实现应用自动扩展。当用户需要从传统的HPA迁移到更灵活的KEDA Scaled Object时,会遇到一些特定的技术挑战。
问题本质
迁移过程中,Flagger会尝试为金丝雀部署创建主版本(Primary)的Scaled Object,但此时系统中可能仍存在由旧版HPA创建的主版本HPA资源。KEDA的准入控制器会阻止这种"一个工作负载被多个自动扩展器管理"的情况,导致迁移失败。
技术原理深度解析
-
所有权冲突机制:KEDA通过内置的准入控制webhook(vscaledobject.kb.io)确保每个工作负载(如Deployment)只能由一个自动扩展器管理,无论是HPA还是Scaled Object。
-
HPA接管机制:KEDA提供了
scaledobject.keda.sh/transfer-hpa-ownership注解,允许Scaled Object接管现有HPA的所有权,而不是创建新的HPA。 -
Flagger的工作机制:当检测到Canary资源中autoscalerRef从HPA变更为Scaled Object时,Flagger会:
- 创建目标Scaled Object
- 尝试创建主版本Scaled Object
- 但不会自动清理旧的主版本HPA
解决方案实现
要实现平滑迁移,需要在Flagger中增强Scaled Object的创建逻辑:
- 注解继承:主版本Scaled Object应继承目标Scaled Object的所有注解,特别是所有权转移注解。
primarySo = &keda.ScaledObject{
ObjectMeta: makeObjectMetaSo(primarySoName, targetSoClone.Labels, targetSoClone.Annotations, cd),
Spec: soSpec,
}
- HPA命名配置:确保主版本Scaled Object生成的HPA名称与预期一致。
Advanced: &keda.AdvancedConfig{
HorizontalPodAutoscalerConfig: &keda.HorizontalPodAutoscalerConfig{
Name: primaryName,
},
},
- 存在性检查:在创建主版本Scaled Object前,检查同名HPA是否存在,动态决定是否添加所有权转移注解。
实践建议
对于正在考虑从HPA迁移到KEDA的用户,建议采用以下步骤:
-
准备阶段:
- 确保KEDA控制器已正确安装
- 验证现有HPA的工作状态
- 准备包含所有权转移注解的Scaled Object定义
-
迁移阶段:
- 先创建带有转移注解的Scaled Object
- 再更新Canary资源的autoscalerRef
- 监控Flagger日志确认迁移状态
-
验证阶段:
- 检查主版本和工作版本的自动扩展行为
- 验证自定义指标是否生效
- 确保没有资源冲突
技术展望
这种迁移模式展示了Kubernetes生态系统中不同组件间的协作方式。未来可能会有更智能的资源迁移机制,例如:
- 自动检测并解决资源冲突
- 提供迁移状态仪表板
- 支持回滚到原始自动扩展器
通过理解这些底层机制,运维团队可以更自信地管理生产环境中的自动扩展策略变更,实现从传统HPA到更先进的KEDA解决方案的无缝过渡。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00