Compose Destinations 中如何优雅地组合多个 Destination 注解
在 Compose Destinations 库中,开发者经常需要为多个屏幕定义相似的导航配置。本文将深入探讨如何通过注解组合的方式实现导航配置的复用,以及在不同模块间的使用注意事项。
注解组合的基本原理
Compose Destinations 允许开发者创建自定义的注解类来复用导航配置。核心思想是通过在自定义注解上标注 @Destination 来继承基础配置,同时暴露可覆盖的参数。
@Destination(
wrappers = [AuthWrapper::class]
)
annotation class AuthDestination(
val navArgsDelegate: KClass<*> = Nothing::class,
)
这种设计模式类似于面向对象编程中的继承概念,自定义注解继承了 @Destination 的基础配置,同时允许子类(使用该注解的地方)覆盖特定参数。
多层级注解组合
更强大的是,这种组合可以形成多层级结构:
@Destination(style = DestinationStyle.Dialog::class)
annotation class DialogDestination(
val navArgsDelegate: KClass<*> = Nothing::class,
val wrappers: Array<KClass<out DestinationWrapper>> = [],
)
@DialogDestination(
wrappers = [AuthWrapper::class]
)
annotation class AuthDestination(
val navArgsDelegate: KClass<*> = Nothing::class,
)
@AuthDestination(
navArgsDelegate = SomeNavArgs::class
)
@Composable
fun SomeScreen() { ... }
这种层级结构让导航配置可以像搭积木一样灵活组合,既保持了基础配置的一致性,又允许特定屏幕的特殊定制。
多模块项目注意事项
当自定义注解需要在不同模块间共享时,必须添加 @Retention(AnnotationRetention.BINARY) 注解:
@Retention(AnnotationRetention.BINARY)
@Destination(wrappers = [AuthWrapper::class])
annotation class AuthDestination
这是因为默认情况下注解的保留策略可能不足以跨模块边界传递。这个细节在多模块项目中尤为重要,否则注解处理器可能无法在依赖模块中检测到这些自定义注解。
设计哲学与最佳实践
-
显式优于隐式:Compose Destinations 团队认为应该明确声明哪些参数可以被覆盖,这使得代码意图更加清晰。
-
单一职责原则:每个自定义注解应该专注于解决一个特定的导航配置问题,如认证、对话框样式等。
-
组合优于重复:通过合理的注解设计,可以避免在多个屏幕中重复相同的导航配置。
-
版本兼容性:值得注意的是,在即将发布的 v2 版本中,将提供更灵活的包装器配置方式,允许在导入模块中定义包装器。
总结
Compose Destinations 的注解组合机制提供了一种强大而灵活的方式来管理应用的导航配置。通过创建自定义注解并合理设置参数覆盖,开发者可以构建出既保持一致性又具备必要灵活性的导航结构。特别是在大型项目中,这种模式能够显著减少重复代码,提高可维护性。对于多模块项目,记住添加适当的保留策略注解是确保功能正常工作的关键。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00