Edge TPU 开源项目使用教程
2024-09-15 12:58:36作者:尤辰城Agatha
1. 项目介绍
Edge TPU 是 Google 专门为在边缘设备上运行 AI 推理而设计的 ASIC(专用集成电路)。它能够在小型物理和功耗足迹中提供高性能,使得在边缘设备上部署高精度的 AI 模型成为可能。Edge TPU 主要用于加速神经网络的推理过程,适用于各种工业应用,如预测性维护、异常检测、机器视觉、语音识别等。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下软件:
- Docker
- Python 3.x
- Git
2.2 克隆项目
首先,克隆 Edge TPU 的 GitHub 仓库到本地:
git clone https://github.com/google-coral/edgetpu.git
cd edgetpu
2.3 安装依赖
使用 Docker 构建和运行项目:
make DOCKER_IMAGE=debian:buster DOCKER_CPUS="k8 armv7a aarch64" DOCKER_TARGETS=tests docker-build
2.4 运行示例代码
Edge TPU 提供了一些示例代码,你可以通过以下命令运行这些示例:
cd examples
python3 classify_image.py --model models/mobilenet_v2_1.0_224_quant_edgetpu.tflite --label models/imagenet_labels.txt --image images/cat.jpg
3. 应用案例和最佳实践
3.1 工业应用
Edge TPU 在工业领域有广泛的应用,例如:
- 预测性维护:通过实时分析传感器数据,预测设备故障并提前进行维护。
- 机器视觉:在生产线上进行实时图像识别,确保产品质量。
3.2 智能家居
在智能家居中,Edge TPU 可以用于:
- 语音识别:实现本地语音助手,提高响应速度和隐私保护。
- 人脸识别:用于家庭安全系统,识别家庭成员和访客。
3.3 最佳实践
- 模型优化:使用 TensorFlow Lite 对模型进行优化,以适应 Edge TPU 的硬件特性。
- 功耗管理:合理配置设备功耗,确保在边缘设备上长时间稳定运行。
4. 典型生态项目
4.1 TensorFlow Lite
TensorFlow Lite 是 Google 推出的轻量级机器学习框架,专为移动和嵌入式设备设计。Edge TPU 与 TensorFlow Lite 紧密集成,提供了高效的模型推理能力。
4.2 Coral 平台
Coral 平台是 Google 为边缘计算推出的完整解决方案,包括硬件加速器(如 Edge TPU)和软件工具(如 TensorFlow Lite)。Coral 平台使得在边缘设备上部署 AI 应用变得更加简单和高效。
4.3 Raspberry Pi
Raspberry Pi 是一款广受欢迎的单板计算机,与 Edge TPU 结合使用,可以构建低成本、高性能的边缘 AI 系统。
通过以上步骤和案例,你可以快速上手并深入了解 Edge TPU 的使用和应用场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76