ProxylessNAS 开源项目使用教程
1. 项目介绍
ProxylessNAS 是一个由 MIT Han Lab 开发的神经架构搜索(NAS)工具,旨在直接为目标任务和硬件平台优化神经网络架构。传统的 NAS 方法通常需要大量的计算资源,并且通常在代理任务上进行搜索,然后迁移到目标任务上。ProxylessNAS 通过直接在目标任务和硬件上进行搜索,避免了代理任务的局限性,从而能够更高效地找到最优的神经网络架构。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch 1.0 或更高版本
- CUDA 10.0 或更高版本(如果使用 GPU)
2.2 安装 ProxylessNAS
你可以通过以下命令克隆并安装 ProxylessNAS:
git clone https://github.com/mit-han-lab/proxylessnas.git
cd proxylessnas
pip install -r requirements.txt
2.3 快速启动示例
以下是一个简单的示例,展示了如何使用 ProxylessNAS 加载预训练模型并进行推理:
import torch
# 加载预训练模型
target_platform = "proxyless_cpu" # 可以选择 proxyless_gpu, proxyless_mobile, proxyless_mobile14
model = torch.hub.load('mit-han-lab/ProxylessNAS', target_platform, pretrained=True)
# 设置模型为评估模式
model.eval()
# 示例输入
input_tensor = torch.randn(1, 3, 224, 224)
# 前向传播
with torch.no_grad():
output = model(input_tensor)
# 打印输出
print(output)
3. 应用案例和最佳实践
3.1 在移动设备上的应用
ProxylessNAS 特别适用于移动设备上的神经网络优化。通过直接在目标硬件上进行搜索,可以确保模型在移动设备上的性能和效率达到最佳。例如,你可以使用 proxyless_mobile
或 proxyless_mobile14
模型来优化移动设备的推理速度。
3.2 在 GPU 上的应用
对于需要高吞吐量的应用场景,如数据中心或高性能计算环境,可以使用 proxyless_gpu
模型。该模型在保持高精度的同时,优化了 GPU 上的推理速度。
3.3 自定义搜索任务
如果你有特定的任务需求,可以通过修改配置文件来自定义搜索任务。ProxylessNAS 提供了灵活的配置选项,允许用户根据具体需求调整搜索空间和优化目标。
4. 典型生态项目
4.1 ProxylessGaze
ProxylessGaze 是一个基于 ProxylessNAS 的实时视线估计项目。它利用 ProxylessNAS 优化后的模型,实现了在移动设备上的高效视线估计。
4.2 AutoGluon
AutoGluon 是 Amazon 开发的一个自动化机器学习工具包,支持多种模型和任务的自动优化。ProxylessNAS 的模型可以集成到 AutoGluon 中,进一步提升自动化模型的性能。
4.3 Microsoft NNI
Microsoft NNI 是一个用于神经网络架构搜索和超参数优化的工具包。ProxylessNAS 可以作为 NNI 的一个插件,帮助用户在目标任务和硬件上进行高效的神经网络搜索。
通过以上模块的介绍和示例,你应该能够快速上手并应用 ProxylessNAS 进行神经网络架构的优化。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09