首页
/ ProxylessNAS 开源项目使用教程

ProxylessNAS 开源项目使用教程

2024-09-13 12:10:02作者:蔡丛锟

1. 项目介绍

ProxylessNAS 是一个由 MIT Han Lab 开发的神经架构搜索(NAS)工具,旨在直接为目标任务和硬件平台优化神经网络架构。传统的 NAS 方法通常需要大量的计算资源,并且通常在代理任务上进行搜索,然后迁移到目标任务上。ProxylessNAS 通过直接在目标任务和硬件上进行搜索,避免了代理任务的局限性,从而能够更高效地找到最优的神经网络架构。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经安装了以下依赖:

  • Python 3.6 或更高版本
  • PyTorch 1.0 或更高版本
  • CUDA 10.0 或更高版本(如果使用 GPU)

2.2 安装 ProxylessNAS

你可以通过以下命令克隆并安装 ProxylessNAS:

git clone https://github.com/mit-han-lab/proxylessnas.git
cd proxylessnas
pip install -r requirements.txt

2.3 快速启动示例

以下是一个简单的示例,展示了如何使用 ProxylessNAS 加载预训练模型并进行推理:

import torch

# 加载预训练模型
target_platform = "proxyless_cpu"  # 可以选择 proxyless_gpu, proxyless_mobile, proxyless_mobile14
model = torch.hub.load('mit-han-lab/ProxylessNAS', target_platform, pretrained=True)

# 设置模型为评估模式
model.eval()

# 示例输入
input_tensor = torch.randn(1, 3, 224, 224)

# 前向传播
with torch.no_grad():
    output = model(input_tensor)

# 打印输出
print(output)

3. 应用案例和最佳实践

3.1 在移动设备上的应用

ProxylessNAS 特别适用于移动设备上的神经网络优化。通过直接在目标硬件上进行搜索,可以确保模型在移动设备上的性能和效率达到最佳。例如,你可以使用 proxyless_mobileproxyless_mobile14 模型来优化移动设备的推理速度。

3.2 在 GPU 上的应用

对于需要高吞吐量的应用场景,如数据中心或高性能计算环境,可以使用 proxyless_gpu 模型。该模型在保持高精度的同时,优化了 GPU 上的推理速度。

3.3 自定义搜索任务

如果你有特定的任务需求,可以通过修改配置文件来自定义搜索任务。ProxylessNAS 提供了灵活的配置选项,允许用户根据具体需求调整搜索空间和优化目标。

4. 典型生态项目

4.1 ProxylessGaze

ProxylessGaze 是一个基于 ProxylessNAS 的实时视线估计项目。它利用 ProxylessNAS 优化后的模型,实现了在移动设备上的高效视线估计。

4.2 AutoGluon

AutoGluon 是 Amazon 开发的一个自动化机器学习工具包,支持多种模型和任务的自动优化。ProxylessNAS 的模型可以集成到 AutoGluon 中,进一步提升自动化模型的性能。

4.3 Microsoft NNI

Microsoft NNI 是一个用于神经网络架构搜索和超参数优化的工具包。ProxylessNAS 可以作为 NNI 的一个插件,帮助用户在目标任务和硬件上进行高效的神经网络搜索。

通过以上模块的介绍和示例,你应该能够快速上手并应用 ProxylessNAS 进行神经网络架构的优化。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
270
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4